SPACE-BASED GAMMA-RAY ASTRONOMY: NEW RESULTS, NEW FRONTIERS, NEW HORIZONS

Luigi Tibaldo Iuigi.tibaldo@mpi-hd.mpg.de

Max-Planck-Institut für Kernphysik, Heidelberg

European Cosmic-Ray Symposium Torino, 5 September 2016

Outline

Introduction

- Fermi
 - diffuse γ-ray emission
 - source catalogs
- New results
 - origin of cosmic rays and particle acceleration
 - the nature of dark matter

- New frontiers
 - extension to TeV
 - new γ-ray emitters
 - long-term variability
- New horizons
 - upcoming and future missions

Space-borne Y-ray telescopes

Addison-Wesley Longman

Detecting Y rays in space

Outline

- Introduction
- Fermi
 - diffuse γ-ray emission
 - source catalogs
- New results
 - origin of cosmic rays and particle acceleration
 - the nature of dark matter

- New frontiers
 - extension to TeV
 - new γ-ray emitters
 - long-term variability
- New horizons
 - upcoming and future missions

The Fermi Y-ray sky

> I GeV Fermi LAT 2008-2015 NASA/DoE/Fermi-LAT collaboration

Resolving the γ -ray sky: diffuse emission

diffuse component D3PO, pseudocolor Selig+ A&A 581 2015 A126

diffuse emission = no individual sources

L.Tibaldo

Status of space-based γ -ray astronomy

7 of 24

Resolving the γ -ray sky: diffuse emission

unresolved sources isotropic γ-ray background = residual CR contamination +extragalactic diffuse emission

Galactic interstellar emission = nucleon-nucleon collisions Bremsstrahlung, inverse Compton

L.Tibaldo

Status of space-based γ -ray astronomy

diffuse component D3PO, pseudocolor Selig+ A&A 581 2015 A126

Resolving the Y-ray sky: sources

- general catalogs, e.g., 3FGL
 - 4 years, 100 MeV-300 GeV
 - 3033 sources (> 4.1 \sigma)

Status of space-based γ -ray astronomy

Outline

- Introduction
- Fermi
 - diffuse γ-ray emission
 - source catalogs

New results

- origin of cosmic rays and particle acceleration
- the nature of dark matter

- New frontiers
 - extension to TeV
 - new γ-ray emitters
 - long-term variability
- New horizons
 - upcoming and future missions

CR origin: testing the SNR paradigm

- SNR paradigm: 10% of SN energy into cosmic rays
- LAT SNR Catalog, I-100 GeV
 - 30 sources classified as SNRs
 - 14 marginal candidates
 - 245 upper limits on radio SNRs

A cocoon of freshly accelerated CRs in Cygnus

- massive star-forming regions
 - CR isotopic abundances (²²Ne, trans-iron)
 - 80% SN = gravitational collapse of massive star
 - superbubbles
- CR cocoon in Cygnus
 - single source or superbubble?
 - advection? confinement?

Fermi LAT collab. Science 334 2011 1103

L.Tibaldo

The Crab nebula flares

- variability < 8 h, 1%
 pulsar spindown power
 - emitting region
 < 3 10⁴ pc
- PeV electrons emitting
 γs up to I GeV
- magnetic reconnection?

Buehler+ ApJ 749 2012 26B

Searches for DM

Outline

- Introduction
- Fermi
 - diffuse γ-ray emission
 - source catalogs
- New results
 - origin of cosmic rays and particle acceleration
 - the nature of dark matter

- New frontiers
 - extension to TeV
 - new γ-ray emitters
 - long-term variability
- New horizons
 - upcoming and future missions

Extension to TeV energies

- segmented ACD/calorimeter: reduce back-splash self-veto
- Pass8 analysis
 - reliable energy estimate up to 2 TeV
 - 25% larger effective area > 10 GeV
- 2FHL Catalog
 - 80 months, 50 GeV-2 TeV
 - 360 sources → 75% previously unknown
- upcoming: 3FHL (1720 sources, 10 GeV-2 TeV)

Fermi LAT collab. ApJS 222 2016 5A

The Fermi bubbles

Y rays (foreground subtracted) 10-500 GeV

Quasi-periodic flux modulation in a γ -ray AGN

- blazar PG 1553+113
 - nearly-periodic oscillation 2.18 y period
 - LAT: c.l. 99% over 6.9 years
 - correlated with optical (> 9 y), radio, X rays
- pulsational accretion flow instabilities? jet precession? accretion-outflow coupling? SMBH binary system?

Fermi LAT collab. ApJL 813 2015 41A

Status of space-based Y-ray astronomy

18 of 24

Outline

- Introduction
- Fermi
 - diffuse γ-ray emission
 - source catalogs
- New results
 - origin of cosmic rays and particle acceleration
 - the nature of dark matter

- New frontiers
 - extension to TeV
 - new γ-ray emitters
 - long-term variability
- New horizons
 - upcoming and future missions

- deep calorimeter (multi TeV, % energy resolution)
 - DAMPE (2015)
 - HERD (>2020)
- + TKR/imaging CAL
 separation (0.02° PSF)
 - Gamma-400 (2021?)

- gas time projection chambers
 - 3 to > 100 MeV energy range
 - $PSF < I^{\circ}$
 - polarization
- R&D:AdePT, HARPO

- Si tracker with no passive converter: Compton+pairs
 - 500 keV to > 100 MeV
 - I° PSF
 - polarization
- e-ASTROGAM (M5?),
 ComPair (MIDEX?)

Summary

L.Tibaldo

Status of space-based γ -ray astronomy

24 of 24

Backup

Science with gamma rays

- relatively easy to detect
- not deflected by magnetic fields

The Fermi Large Area Telescope

Anticoincidence Detector (ACD) → segmented → 0.9997 MIP efficiency

Pair-tracking Telescope

1.8 m x 1.8 m x 0.72 m

Precision Si-strip Tracker + W Converters (TKR): → 12 planes 3% r.l. (FRONT) → 4 planes 12% r.l. (BACK) → 2 planes with no converter →0.9 M channels → > 0.7 m² active Si

Data challenge simple SNR models

Fermi LAT collab. ApJS 224 2016 8A

The cosmic-ray gradient across the Milky Way

- emissivity spectrum in rings (H I line Doppler shift)
- intensity/spectral variations
- challenge simple propagation models

CRs in the halo of the Milky Way

- high- and intermediate velocity clouds
 → CR densities in the Galactic halo
- decrease with distance from disk at 97.5% c.l.
- agreement with propagation models
 - OK with B/C ¹⁰Be/⁹Be (confinement region: 4-6 kpc)

The GeV Galactic center excess

- residual emission near the Galactic center peaking at few GeV
 - spherical or bipolar?
 - low/high-energy shape of spectrum uncertain
- origin
 - DM annihilation?
 - poorly modeled interstellar emission?
 - Fermi bubbles?
 - unresolved sources (ms pulsars)?

Status of space-based γ -ray astronomy

31 of 24

Novae as Y-ray sources

Fermi LAT collab. Science 345 2014 554A

10-10

10-11

V407 Cyg 2010

- > 100 MeV detections for 1 symbiotic + 5 classical novae
- particle acceleration mechanism unclear

A state-change in a γ -ray pulsar

- PSR J2021+4026: simultaneous flux/ spindown change
- reconfiguration of magnetosphere?
- new state change in 2015

Fermi LAT collab. ApJL 777 2013 2

L.Tibaldo