

Cosmic Ray Anisotropies: A Review

O. Deligny (CNRS/IN2P3 - IPN Orsay) - ECRS 2016

Cosmic Rays and Propagation Regimes

Anisotropy and CR Observatories

- Challenge: Control of the counting rate at the level of the anisotropy contrast searched for (weather modulations, local-angle dependences of the energy estimators, etc.)
- Of particular interest/difficulty: dipole
- In most cases, searches in right ascension only (be it in several declination bands): not the `real` dipole!

Aglietta et al. (EAS-TOP collaboration), ApJ 692 (2009) L130

Dipole Observations

- Northern hemisphere: Tibet ASγ, Super-Kamiokande, Milagro, EAS-TOP, MINOS, ARGO-YBJ
- Southern hemisphere: IceCube/IceTop

IceCube/IceTop

Dipole Observations

Phase steadily migrating and then suddenly changes/flips

Amplitude increasing up to 10 TeV, and then decreasing

Diffusion and .

Propagation in a turbulent magnetic field resonant mode: Diffusion approximation: scattering on isotropic diffusion centers each λ

Angular distribution at the observation point:

θ

Anisotropies at Small Angular Scales (CRA Madison, Sept 27 (2015)

$$\Phi_{obs}(\theta, \varphi) = \frac{c}{4\pi\lambda} \int_0^\lambda dr \ \tilde{n}(r, \theta, \varphi)$$

Density to $\tilde{n}(r,\theta) \simeq \tilde{n}(r\cos\theta,0)$ first order: $\simeq \tilde{n}(0) + r\cos\theta \frac{\partial \tilde{n}(0)}{\partial r}$ $\Phi_{obs}(\theta,\varphi) \simeq \frac{c}{4\pi} \tilde{n}(0) \left(1 + \frac{\lambda}{2} \frac{1}{\tilde{n}(0)} \frac{\partial \tilde{n}(0)}{\partial r} \cos\theta + ...\right)$ $\vec{\Phi}_{obs}(\mathbf{n}$

i (r,θ) For each single source, anisotropy ~ dipole A dipoléθs represented by a vector θ Observed dipole = Sum of <u>all</u> individual dipoles

Diffusion and Dipole

• Relevant benchmark scenario: discrete sources stochastically distributed in space and time in the Galaxy [Erlykin & Wolfendale (2006)]

Amato & Blasi (2011): Green function satisfying the boundary conditions from the geometry of the Galaxy

(see also Erlykin & Wolfendale (2006), Ptuskin et al. (2012), Pohl & Eichler (2012), Streshnikova et al. (2013), Kumar & Eichler (2014), Mertsch & Funk (2014))

- Observed dipole dominated by the most `local` source at some energy
- In average, increase with energy (diffus. coeff.), but compensation mechanism due to the summing rule of the dipoles in each realization + changes in mass composition
- Abrupt changes of phase with energy, when the contribution of one source dominates the global vector (`local`source)

Impact of Local Environment

- Anisotropic diffusion induced by the local ordered magnetic field [Ahlers, 1605.06446]
 - Larmor radius much smaller than typical scattering length in local ordered **B**

Diffusion tensor $K_{ij} = \frac{\hat{B}_i \hat{B}_j}{3\nu_{\parallel}} + \frac{\delta_{ij} - \hat{B}_i \hat{B}_j}{3\nu_{\perp}} + \frac{\epsilon_{ijk} \hat{B}_k}{3\nu_A}$ dominated by the first term

Projection of the CR gradient onto the magnetic field direction

- Subtracting CG effect corresponding to the Sun's motion towards the solar apex
- Equatorial components of the dipole corrected for projection effects

Toy model: impact of Vela SNR on the average anisotropy of all Galactic SNRs:

Beyond the Dipole Observations

• Features observed by Milagro, ARGO, IceCube, HAWC

Beyond the Dipole Observations

IceCube, update of ApJ 740 16 (2011)

From Gradient Density to Angular Distribution

Effect of the magnetic turbulence geometry within the last sphere of diffusion [Giacinti & Sigl, 2012, also Ahlers 2014]

- Liouville: the isotropic flux outside the scattering mean free path remains isotropic
- Higher-order multipoles generated from the initial dipole, conserving the anisotropic fraction of the flux

11

• Energy-dependent structures at different angular scales

Probing the Magnetic Field Turbulence?

Test particle trajectories integrated in a compressible sub-Alfvénic isothermal MHD turbulence in low gas-to-magnetic pressure value β [Lopez-Barquero et al., 2015]

- β =0.2, M_A=0.773
- Controlled parameter in this MHD model of the turbulence: external mean magnetic field
- Reasonable reproduction of the power spectrum

Small Scales and Heliospheric Electric Field

[Drury, 2013]

- e.m. field purely magnetic in the plasma rest frame, but appearing with an induced electric component in a moving frame
- Above TeV energies, little deflections while penetrating the heliosphere
- With heliospheric length scale of ≈ 100 AU, velocity scale of $\approx 10^4$ - 10^5 m/s and magnetic field of \approx nT, induced potential shift of ≈ 100 MV-1 GV

- For same incoming directions/ energy bands, TeV energies shifted at the ≈10⁻⁴ level
- Small-scale TeV anisotropies as the signatures of the heliospheric electric field structure

Alternative: Magnetic funnelling [Drury & Aharonian 2006, Salvati 2010], Anisotropic turbulence [Malkov et al., 2010], Local source in the heliotail [Lazarian & Desiati, 2010], Dark matter [Harding 2013], etc.

PeV-EeV Anisotropies

- Energy range where the Larmor radius exceeds the largest turbulence scales → Effect of the regular field amplified
- The full diffusion tensor matters, the non-diagonal elements inducing drift motions (Ptuskin et al., 1993)
- Direction of the dipole: not necessarily aligned with the dominant source(s):

$$\delta_r = \frac{3}{c \ N} \left(-D_\perp \frac{\partial N}{\partial r} + D_A \text{sign}(B_{reg}^{\phi}) \frac{\partial N}{\partial z} \right) \quad \delta_z = \frac{3}{c \ N} \left(-D_\perp \frac{\partial N}{\partial z} - D_A \text{sign}(B_{reg}^{\phi}) \frac{\partial N}{\partial r} \right)$$

• Amplification/Distortions of the density gradients:

 \star Solutions for stationary states only

PeV-EeV Observations

- Phases fairly consistent about the RA of the GC
- Possible/expected increase of amplitudes do not compensate the decrease in statistics
- Much larger exposure needed to probe the amplitudes

EeV and >EeV CRs

EeV and >EeV Large-Scale Anisotropies

- Back-tracking anti-particles with random directions from the Earth to outside the Galaxy [Thielheim & Langhoff 1968, J. Phys A 694]
- Each test particle probes the total luminosity along the path of propagation from each direction as seen from the Earth
- For stationary sources emitting equally in all directions, the time spent in the source region s proportional to the flux detected in that direction

- \Rightarrow EeV protons not from the Galaxy
- \star Caveat: Temporal-dependent solutions for discrete sources?

EeV and >EeV Observations

Full-Sky Map > 10 EeV (Auger/Telescope Array)

Constraints on Extragalactic Scenarios?

- Benchmark-scenario: Dipole at the entrance of the Galaxy
- Back-tracking technique to connect the observed ${\bf n}$ (random) to the flux outside from the Galaxy
- Dipole not `destroyed` by the GMF (JF12 model here)
- Detection of higher orders: probe of the extragalactic CR gradient outside from the Galaxy

UHE Anisotropies (?)

J. Miró - Drowned Sun

Southern hemisphere (Auger, 2015)

- Scan on energy threshold E and circular window radius Ψ to compute the obs/exp number of events
- 4.3σ for E>54 EeV and Ψ =12°
- Post-trial p-value: 69%

Significance map for Ψ =12° and E>54 EeV

Map for E>52 EeV and 2MRS objects < 90 Mpc

• Cross-correlation with catalogs of extragalactic matter:

Objects	E_{t}	5	Ψ	D		f _{min}		P
	[Ee]	V]	[°]	[M	pc]			
2MRS Galaxi	es 52	2	9	9	0	1.5	5×10 ⁻³	24%
Swift AGNs	58	;	1	8	0	6	$\times 10^{-5}$	6%
Radio galaxie	es 72		4.75	9	0	2	×10 ⁻⁴	8%
Objects	Eth	Ψ	L)	L	in	f_{min}	P
	[EeV]	[°] [N		pc] [erg		/s]		
Swift AGNs	58	18	13	0	10	14	2×10^{-6}	1.3%
Radio galaxies	72	4.75	90	0	1039	.33	5.1×10 ⁻⁵	5 11%

22

➡ No significant indication of anisotropy

Northern hemisphere (Telescope Array, 2016)

• `Hot spot` status above 57 EeV

Map for E>57 EeV, smoothed at 20 deg.

- 109 events, 24 within the 20° window (6.88 exp.)
- Post-trial significance: P=3.7 10^{-4} (3.4 σ)

• Same significance as in 2014 (2 more years of data analysed here)

• Energy spectrum ON/OFF:

• Correlation with LSS?

23

Tension with isotropy?

Multi-Messenger Approach: IceCube/Auger/TA

JCAP 01 (2016) 037

• Cross-correlations between UHECRs and IceCube neutrinos

- Smallest p-value: IceCube highenergy cascades, angular scale of 22°, post-trial p-value: 5 10-4 (considering isotropic UHECRs)
- To be continued...

- Anisotropies up to ≈PeV energies well established
 - Not only dipoles!
 - Important developments for local CR propagation
- Quest of UHECR origin more difficult than expected
 - No small-scale clustering observation, only dipoles seem at reach!
 - Need for composition-based searches
 - Need for (much) larger exposure keeping similar resolutions...