Solar energetic particle events measured by the PAMELA mission

Alessandro Bruno INFN and University of Bari, Italy

on behalf of the PAMELA collaboration

XXV European Cosmic Ray Symposium Torino, Italy, September 5-9, 2016

The PAMELA experiment

Main requirements \rightarrow high-sensitivity particle identification and precise momentum measure

Size: 130x70x70 cm³ GF: 21.5 cm² sr Mass: 470 kg Power Budget: 360W

Resurs DK-1 satellite: Semi-polar (70° inclination) and elliptical (350÷610 km altitude) orbit

A. Bruno

PAMELA's SEP measurements

- ✤ wide energy interval: ~80 MeV several GeV
 - bridging the low energy data by other space-based instruments and the GLE data by the worldwide network of neutron monitors (NMs)
- ✤ sensitive to particle composition
 - o protons, He nuclei, ...
- possibility to reconstruct the angular distribution
 - investigation of flux anisotropies

Observations of the energy spectra of high-energy SEPs provide important constraints on particle acceleration and transport.

Spectral fits

The high-energy cutoffs reflect changes in the SEP acceleration efficiency

20120517, UT023448 -- 20120520, UT001341

NB: GOES fluxes corrected for the GCR background and contaminations

Trajectory analysis

[Shea & Smart, ERP No 524, AFCRL-TR-75-0381, 1975]

- In order to measure SEP angular distributions and investigate the degree of anisotropy, it is necessary to account for the effect of the geomagnetic field on particle propagation.
- Typically (NMs) one is interested in particle arrival "asymptotic directions", i.e. the directions of approach before they enter the magnetosphere.
 - To determine asymptotic directions, particle trajectories are reconstructed in a model magnetosphere by means of **numerical integration methods** (Smart & Shea 2005).
- Geomagnetic field models: IGRF11 + TS05/TS07D high-resolution dynamical models
- ★ The trajectory analysis also allows to evaluate geomagnetic cutoff rigidities and to separate protons of interplanetary (GCRs & SEPs) and atmospheric (trapped & albedo) origin.

Asymptotic viewing directions

First polar pass (01:58-02:20 UT) who registered the May 17, 2012 event

PAMELA's asymptotic (vertical) directions of view in GEO coordinates.

- \circ $\;$ The color codes refer to the particle rigidity.
- The contour curves represent values of constant pitch angle with respect to the IMF.

As PAMELA was moving eastward, its asymptotic field of view rapidly varied performing a clockwise loop over the region above Brazil.

PAMELA's asymptotic directions as a function of time and pitch-angle.

Although the instantaneous pitch angle coverage is small, a large interval (0-150 deg) is covered during the whole polar pass.

PAMELA is looking at IMF direction at ~2:06 UT.

Bruno et al., "The May 17, 2012 solar event: Back-tracing analysis and flux reconstruction with PAMELA", *Journal of Physics: Conference Series* 675.3 (2016).

Pitch angle distribution

The May 17, 2012 event

PAMELA observes two populations simultaneously with very different pitch angle distributions:

- a low-energy component (<1 GV)
 - confined to pitch angles <90°
 - and exhibiting signicant scattering or redistribution;
- \circ $\,$ and a high-energy component (>1.5 GV) $\,$
 - beamed with pitch angles <30°,
 - consistent with NM observations.
- The component with intermediate energies (1 - 1.5 GV) suggests a transition between the low and high energies.

At rigidities >1 GV, corresponding to NM data, the particles are mostly field aligned.

see: Adriani et al., ApJ, 801:L3, 2015

The May 17, 2012 event

Adriani et al., ApJ, 801:L3, 2015

The presence of these simultaneous populations can be explained by postulating a local scattering/redistribution in the Earth's magnetosheath, with a major role played by the quasi-perpendicular IMF orientation

Time variations in the intensity (1.57 - 5.70 GV) of protons, He nuclei, electrons and positrons, during the **Forbush Decrease** event associated with the 13 Dec 2006 CME

Time profile of the geomagnetic cutoff latitudes measured by PAMELA for different rigidity bins, during the 14 Dec 2006 **geomagnetic storm**

Conclusions

- The PAMELA satellite-experiment is providing accurate SEP measurements between solar cycles 23 and 24 (>30 events), in a wide energy range (≥80 MeV),
 - bridging the gap between the current spacecraft observations and the energy range accessible by ground-based neutron monitors (GLE events).
- Its unique observational capabilities include the possibility of measuring the flux angular distribution and thus investigating possible SEP anisotropies.
 - based on advanced particle tracing techniques
- PAMELA's observations of the energy spectra of high-energy SEPs provide important constraints on particle acceleration and transport mechanisms, bringing vital new input that will advance our predictive capability for space weather modeling.