Study of the performance of the HEPD apparatus for the CSES mission Beatrice Panico INFN Naples

INFN Istituto Nazionale di Fisica Nucleare

ECRS 2016

THE CSES MISSION

CSES: China Seismo-Electromagnetic Satellite

- Space mission with different goals
- Collaboration China National Space Administration (CNSA) - Italian Space Agency (ASI)
- Developed by:
 - China Earthquake Administration (CEA)
 - Italian National Institute for Nuclear Physics (INFN)
 - Chinese and Italian Universities
 - 98° inclination Sunsynchronous circular orbit
 - Altitude ~500 km
 - Expected lifetime ~5 years
 - Launch scheduled for the first half of 2017

THE CSES MISSION

CSES: China Seismo-Electromagnetic Satellite

Several instruments on board:

- a Search-Coil Magnetometer, a High-Precision Magnetometer and Electric Field Detector for measuring the magnetic and electric fields
- a Plasma Analyser Package and a Langmuir Probe for *measurements of local plasma disturbances*
- a GNSS Occultation Receiver and a three frequency (VHF/UHF) Transmitter for the study of profile disturbance of plasma
- the High-Energy Particle Package and High-Energy Particle Detector for the measurement of the flux and spectrum of energetic particles

THE HEPD DETECTOR

HEPD: High Energy Particle Detector

The High-Energy Particle Detector (HEPD) is developed by the Italian members of the CSES mission

Parameter	Value
Energy range	Electron: 3-100 MeV
	Proton: 30-200 MeV
Angular resolution	<8°@ 5 MeV
Energy resolution	<10% @ 5 MeV
Particle Identification	>90%
Maximum Omni-directional Flux	10 ⁷ cm ⁻² s ⁻¹ sr ⁻¹ (accepted by trigger before pre-scaling)
Operatingtemperature	-10 °C - + 35 °C
Mass (including electronics)	< 43 kg
Power Consumption	< 43 W
Scientific Data Bus	RS-422
Data Handling Bus	CAN 2.0
Operation mode	Event by Event
Life span	> 5 Years

THE HEPD DETECTOR

- The tracker, made of two planes of doubleside silicon micro-strip sensors; each tracker plane includes 3 ladders made of 2 modules
- The trigger system, made of one layer of plastic scintillator, divided into 6 segments; different trigger combinations can be used
- The range calorimeter, which consists of two parts:
 - The first part is made with 16 plastic scintillator planes, 1cm thick
 - The bottom part of the calorimeter consists of a layer with 9 LYSO crystals
- The **veto system**, five plastic scintillator counters, 5 mm thick
- The electronics sub-system

EXPECTED RATE

Expected rate of cosmic rays along the satellite orbit

Data from PAMELA experiment

Period: July, 7th – November, 30th 2006 (142 Days) December 13th : Solar flares is excluded Latitude: [-60°;+60°] Altitude: [490 – 520] km Geometric factor PAMELA/HEPD ~ 6

EXPECTED RATE

Expected rate of cosmic rays along the satellite orbit

Data from PAMELA experiment

Period: July, 7th – November, 30th 2006 (142 Days) December 13th : Solar flares is excluded Latitude: [-60°;+60°] Altitude: [490 – 520] km Geometric factor PAMELA/HEPD ~ 6

Different trigger masks depending on the orbital zone!

TRIGGER CONFIGURATIONS

Different trigger masks depending on the orbital zone!

- 1. T1 & P1
- 2. T1 & P1 & P2
- 3. T1 & P1 & P2 & P3
- 4. T1 & (P1 || P2)
- 5. (T1,3 || T1,4) & (P1)
- 6. T1 & (P1 || P2) & (P16 || P15)
- 7. T1 & (P1 || P2) & P17

MC SIMULATION

TRIGGER CONFIGURATIONS

Different trigger masks depending on the orbital zone!

- 1. T1 & P1
- 2. T1 & P1 & P2
- 3. T1 & P1 & P2 & P3
- 4. T1 & (P1 || P2)
- 5. (T1,3 | | T1,4) & (P1)
- 6. T1 & (P1 || P2) & (P16 || P15)
- 7. T1 & (P1 || P2) & P17

Each of these configurations have to be considered:

- without veto
- with lateral veto
- with the whole veto (lateral+bottom)

ELECTRON/PROTON DISCRIMINATION

Estimates of the electron discrimination power against protons

ELECTRON/PROTON DISCRIMINATION

dE vs E method for discriminating electrons against protons

- *dE:* is the particle energy loss within the two layers of the silicon tracker
- *E:* is the energy released in the whole detector.

 Proton contamination into electron sample is negligible

ELE - ENERGY RESOLUTION

3 3.5 4 4.5

E(MeV)

14

E(MeV)¹⁸

12

25

30

E(MeV)

ENERGY RESOLUTION

Parameter	Value
Energy range	Electron: 3-100 MeV
	Proton: 30-200 MeV
Angular resolution	<8°@ 5 Me∨
Energy resolution	<10% @ 5 MeV
Particle Identification	>90%
1.1.4477118 485 5508955111 1156-194	CARRIEN CONTRACTOR

THE QUALIFICATION MODEL

4 HEPD versions must be produced:

- Electrical Model, EM (2014)
- Structural and Thermal Model, STM (2015)
- Qualification Model, QM (2016)
- Flight Model (FM) (under construction)

The bottom part of the HEPD QM calorimeter. The 9 LYSO crystals are shown

B. Panico – 25th ECRS 07/09/2016, Torino

Front view: The trigger system with its six segments is visible

Side view: The 16 plastic scintillator planes can be seen. The PMTs are at the corners of each calorimeter plane

TEST BEAM @BTF

Beam test @BTF of the "Laboratori Nazionali di Frascati" of INFN

• Electrons and positrons from 30 to 150 MeV

The HEPD QM during the beam test at the BTF

Electrons 30 MeV ~10⁴ events

TEST BEAM @BTF

Beam test @BTF of the "Laboratori Nazionali di Frascati" of INFN

Electrons and positrons from 30 to 150 MeV

The HEPD QM during the beam test at the BTF

CONCLUSIONS

- Trigger configurations have been chosen according to the available bandwidth for the data transfer
 - ✓ It is changed depending on the orbital zones crossed by the satellite
- Requests on energy resolution and electron/proton discrimination have been answered
- ✓ HEPD Qualification Model has been tested
 - Beam test @BTF of the "Laboratori Nazionali di Frascati" of INFN Data under study
- ✓ HEPD Flight Model under construction
 - ✓ Delivery on September/October 2016