Photon pair production in BabaYaga@NLO with per mille accuracy

Guido Montagna

Dipartimento di Fisica Nucleare e Teorica, Università di Pavia Istituto Nazionale Fisica Nucleare, Sezione di Pavia Partially supported by the INTAS project "Higher–order effects in $e^+e^$ annihilation and muon anomalous magnetic moment"

$e^+e^- \rightarrow \gamma\gamma(n\gamma)$: motivations and related work

• Photon pair production is an important process to monitor luminosity. Used at BABAR, BES III an CLEO–c together with Bhabha and $\mu^+\mu^-$, and as a cross–check of Bhabha at KLOE (with $\sim 0.3\%$ agreement)

- Generators used also in recent experimental publications (BKQED, BabaYaga v3.5...) miss relevant theoretical pieces and have an accuracy of ~ 1% ⇒ more precise tools necessary!
- Before our calculation, only Dubna–Novosibirsk Monte Carlo MCGPJ could claim an accuracy at the per mille level => independent calculations useful!

MCGPJ: A.B. Arbuzov *et al.*, Eur. Phys. J. **C46** (2006) 689 based on theory by A.B. Arbuzov *et al.*, JHEP **9710** (1997) 001

CLEO-c luminosity data vs BabaYaga v3.5

Two photon production in BabaYaga@NLO

G. Balossini et al., Phys. Lett. B663 (2008) 209 th. ingredients as for Bhabha in BabaYaga@NLO, Nucl. Phys. B758 (2006) 227

Exact $\mathcal{O}(\alpha)$ soft+virtual (*SV*) corrections and hard bremsstrahlung (*H*) matrix elements are combined with a QED multiple photon Parton Shower (PS) through a matching procedure

•
$$d\sigma_{LL}^{\infty} = \Pi(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} |\mathcal{M}_{n,LL}|^2 d\Phi_n$$
 [pure PS of BabaYaga v3.5]

- $d\sigma_{LL}^{\alpha} = [1 + C_{\alpha,LL}] |\mathcal{M}_0|^2 d\Phi_0 + |\mathcal{M}_{1,LL}|^2 d\Phi_1 \equiv d\sigma_{LL}^{SV}(\varepsilon) + d\sigma_{LL}^H(\varepsilon)$
- $d\sigma_{\text{exact}}^{\alpha} = [1 + C_{\alpha}] |\mathcal{M}_0|^2 d\Phi_0 + |\mathcal{M}_1|^2 d\Phi_1 \equiv d\sigma_{\text{exact}}^{SV}(\varepsilon) + d\sigma_{\text{exact}}^H(\varepsilon)$

•
$$F_{SV} = 1 + (C_{\alpha} - C_{\alpha,LL})$$
 $F_H = 1 + \frac{|\mathcal{M}_1|^2 - |\mathcal{M}_{1,LL}|^2}{|\mathcal{M}_{1,LL}|^2}$

$$d\sigma_{\text{matched}}^{\infty} = F_{SV} \Pi(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{i=0}^{n} F_{H,i} \right) |\mathcal{M}_{n,LL}|^2 d\Phi_n$$

in such a way that

- ★ $[\sigma_{\text{matched}}^{\infty}]_{\mathcal{O}(\alpha)} = \sigma_{\text{exact}}^{\alpha}$, avoiding double counting and preserving resummation of $\alpha^n L^n$, $L \equiv \log \frac{Q^2}{m^2}$ leading logs
- ★ momenta of all the final-state particles are exclusively generated.

 $e^+e^- \rightarrow \gamma\gamma(n\gamma)$ in BabaYaga@NLO: technical tests

Perfect agreement with BKQED for the O(α) NLO corrections to the inclusive e⁺e⁻ → γγ(γ) cross section

F.A. Berends and R. Kleiss, Nucl. Phys. B186 (1981) 22

$\sqrt{s}(\text{GeV})$	6	10	20
$\delta_{\mathrm{T}}^{\mathrm{BKQED}}(\%)$	13.8	15.3	17.4
$\delta_{\mathrm{T}}^{\mathrm{BabaYaga@NLO}}(\%)$	13.81(1)	15.30(1)	17.51(10)

Successful independence from the soft–hard photon separator *ϵ*, in the numerical limit *ϵ* → 0

$e^+e^- \rightarrow \gamma\gamma(n\gamma)$: size of radiative corrections

Selection criteria – ϕ , τ –charm and B factories

a)
$$\sqrt{s} = 1, 3, 10 \text{ GeV}, E_{\min} = 0.3\sqrt{s}, \vartheta_{\gamma}^{\min,\max} = 45^{\circ} \div 135^{\circ}, \xi_{\max} = 10^{\circ}$$

\sqrt{s} (GeV)	1	3	10
σ	137.53	15.281	1.3753
$\sigma_{\alpha}^{\text{PS}}$	128.55	14.111	1.2529
$\sigma_{\alpha}^{\text{NLO}}$	129.45	14.211	1.2620
σ_{\exp}^{PS}	128.92	14.169	1.2597
$\sigma_{ m exp}$	129.77	14.263	1.2685
δ_{α}	-5.87	-7.00	-8.24
δ_{∞}	-5.65	-6.66	-7.77
$\delta_{ m exp}$	0.24	0.37	0.51
$\delta_{lpha}^{ m NLL}$	0.70	0.71	0.73
$\delta_{\infty}^{ m NLL}$	0.66	0.66	0.69

Cross sections (nb) & relative corrections (%)

- ★ Like for Bhabha, both exact $\mathcal{O}(\alpha)$ and higher–order corrections necessary for 0.1% theoretical precision ★
- No correction (and related $\Delta \alpha_{had}^{(5)}$ uncertainty!) due to vacuum polarization

$e^+e^- \rightarrow \gamma\gamma(n\gamma)$: distributions [for Φ -factories]

Angular and energy distribution of the most energetic photon

 Interplay of NLO and multiple photon corrections also necessary for precise simulations of differential cross sections

ヘロン ヘアン ヘビン ヘビン

э

- The event generator BabaYaga has been significantly improved to provide predictions for
 - $e^+e^- \rightarrow \gamma\gamma(n\gamma)$ with per mille accuracy • $e^+e^- \rightarrow \gamma\gamma\gamma(n\gamma)...$ with per cent (or better) accuracy

You can download BabaYaga@NLO from

http://www.pv.infn.it/~ hepcomplex/babayaga.html

- * This improved description of the $\gamma\gamma$ channel can contribute to reduce the error in the luminosity measurement at flavour factories
- Like for Bhabha, both exact O(α) and multiple photon corrections are necessary for 0.1% theoretical description of integrated cross sections and distributions
- The amount of the corrections to γγ is about one half of that to Bhabha scattering, when considering comparable experimental set–up
- It would be useful to compare BabaYaga@NLO with MCGPJ for this final state, to better asses the precision of the two generators. Maybe some experimentalists have already results at hand?

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ