

Study of two and multi particle correlations in ¹²C+²⁴Mg reaction at E=35 AMeV INFN Istituto Nazionale di Fisica Nucleare

L. Quattrocchi^{1,2}, L. Acosta^{2,3}, L. Auditore⁴, G. Cardella¹, A. Chbihi⁵, E. De Filippo¹, S. De Luca⁴, D. Dell' Aquila^{8,11}, L. Francalanza⁸, B. Gnoffo^{1,2}, G. Lanzalone^{6,10}, I. Lombardo^{8,11}, I. Martel⁷, N. S. Martorana^{2,6}, S. Norella⁴, A. Pagano¹, E.V. Pagano^{2,6}, M. Papa¹, S. Pirrone¹, G. Politi^{1,2}, F. Porto^{2,6}, F. Rizzo^{2,6}, E. Rosato^{8,11†}, P. Russotto¹, A. Trifirò⁴, M. Trimarchi⁴, G. Verde^{1,9}, M. Veselsky¹², M. Vigilante^{8,11}

¹ INFN Sezione di Catania, Catania (Italy), ² Università di Catania Dip. di Fisica e Astronomia, Catania (Italy), ³ Instituto de Fisica Universidad Nacional Autònoma de México, México City (Mexico), ⁴ Università di Messina Dip. di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra, e INFN Sezione di Catania, Messina (Italy), ⁵ GANIL CEA-IN2P-CNRS, Caen (France), ⁶ INFN, Laboratori Nazionali del Sud, Catania (Italy), ⁷ Departamento de Fisica Aplicada Universitad de Huelva, Huelva (Spain), ⁸ INFN Sezione di Napoli (Italy), ⁹ IPN Orsay, Orsay (France), ¹⁰ Università Kore, Enna (Italy), ¹¹ Università di Napoli Federico II Dipartimento di Fisica, Napoli (Italy), ¹² Slovak Academy of Sciences, Bratislava (Slovakia), ¹³CNR- IPCF, Messina (Italy), [†]Decease

Two and multi particle correlations

Two-particle correlations allow to explore dynamics of heavy ion collisions and also to access some structure properties of produced systems.

$t - \alpha$ CORRELATION FUNCTION

1		
4		
	- I 668 MeV -	
4.67 14-14		_
4.65 MeV		>
F		x.

These techniques are also extended to multi particle correlations to explore the competition between direct and sequential decay of observed resonances. $^{12}C+^{24}Mg$ E=53 and 95 AMeV

with INDRA 3α CORRELATION FUNCTION

CORRELATION experiment at LNS

A study of two and multi particle correlations in ${}^{12}C+{}^{24}Mg$ reaction at E=35 AMeV has been performed at Laboratori Nazionali del Sud of Catania by using the forward part of CHIMERA 4π multi detector.

Monte-Carlo Símulations filtered through the geometry and detector response of CHIMERA.

Experimental results

 ε_i distribution gives us information about decay

Experimental plot exhibits a more uniform distribution that does not allow us to exclude any of the two decay mechanisms...

For better evaluation ε_i distribution has been analyzed!

$\varepsilon_{i} DISTRIBUTION$

Dalítz parameters

$x = \sqrt{3} (E_{1CM} - E_{2CM}) / 3$

 $y = (2E_{3CM} - E_{1CM} - E_{2CM})/3$

Monte-Carlo Símulations

filtered through the geometry and detector response of CHIMERA.

quantitative

Experimental results

FIT OF & DISTRIBUTION

 $\mathcal{F}ITOF \varepsilon_i \mathcal{D}ISTRIBUTION$

 $\boldsymbol{\varepsilon}_{i}$: highest

normalized energy

The agreement between simulated and experimental data improves when increasing the percentage of direct decay component

