Triggerless readout for silicon detectors at PANDA

Tommaso Quagli^{1, 2} on behalf of MVD Group - INFN, Sezione di Torino

¹II. Physikalisches Institut, Justus-Liebig-Universität Gießen; ²INFN, Sezione di Torino

The PANDA Experiment

- Fixed target experiment
- Almost 4π acceptance •
- Cooled antiproton beam using electron and stochastic cooling
- Proton or heavy nuclear target
- Momentum from 1.5 up to 15 GeV/c
- Trigger-less readout at
 - $\sim 10^7$ interactions / s

The Micro-Vertex-Detector

- 4 concentric barrels and 6 forward disks
- Vertex reconstruction for primary and • secondary vertices
- Improvement of momentum resolution and PID
- Requirements: \bullet
 - spatial resolution (tens of μ m)
 - good time resolution and low material budget
 - high radiation tolerance (10¹⁴ n_{1MeV eq} / cm²)

Hybrid Pixel Detector Readout: ToPix

- Detector modules based on epitaxial pixel sensors and ToPix readout chip
- Main features of ToPix:
 - pixel size: $100 \times 100 \mu m^2$
 - chip active area: 11.4 x 11.6 mm² (116 rows, 110 columns)
 - dE/dx measurement: ToT, 12 bits dynamic range
 - Max. input charge: 50 fC
 - Noise floor: < 200 e⁻
 - Input clock frequency: 160 MHz
 - Time resolution: 6.43 ns (1.86 ns r.m.s.)
 - Power consumption: < 800 mW / cm²
 - Max. event rate: $6.1 \cdot 10^6$ / s
 - Total Ionizing Dose: < 100 kGy

Schematic of the pixel cell

ToPix_v4 prototype

- ASIC size: 3 x 6 mm², clock frequency 160 MHz
- 130 nm CMOS technology
- Pixel matrix: 640 cells, 2x2x128 and 2x2x32 columns
- Time over Threshold technique, 12 bits dynamic range
- Compatible with sensors of previous version (ToPix_v3)
- Hamming encoding and TMR pixel logic protection
- Leading and trailing edge registers with DICE-protected latches
- SEU protected EoC
- Serial data output (SDR and DDR)
- GBT compatible SLVS I/O

Residual distributions

SEU tests of ToPix v4 with ion beams @ LNL-INFN. Study of the configuration registers inside the pixels. SEU cross section one order of magnitude lower with respect to ToPix_v3 (D-type flip-flops circuits with TMR instead of latches with TMR)

4 single-chip assemblies under test at FZJ with 2.9 GeV/c proton beam

Double-sided Silicon Strip Detector Readout: PASTA

- Barrels: rectangular and square strip sensors
- Disks: trapezoidal strip sensors
- Front-end readout chip: PASTA (PANDA STrip ASIC)
- Chip concept inspired by TOFPET
- Main features of PASTA:
 - channels: 64
 - input pitch: 63 µm -
 - clock frequency: 160 MHz
 - rate capability: 100 kHz / ch
 - time bin width: 50 400 ps
 - dE/dx measurement: ToT, 8 bits dynamic range
 - Front-end noise: < 600 e⁻

Chip Architecture

PASTA on the DISH (Digital Interface for Strip data Handling) test board with a strip sensor

Chip Simulations

Tommaso Quagli II. Physikalisches Institut, JLU Heinrich-Buff-Ring 16 D-35392 Gießen Tommaso.Quagli@exp2.physik.uni-giessen.de

