Misura degli adroni composti da quark leggeri in funzione della molteplicità con l'esperimento ALICE

Nicolò Jacazio per la Collaborazione ALICE

Università di Bologna e INFN

Terzo Incontro Nazionale di Fisica Nucleare INFN2016 Frascati

14-16 Novembre 2016

Nicolò Jacazio

Outline of this presentation

- Collision systems at the LHC
- The ALICE experiment
- Particle multiplicity
- Signs of collectivity in small collision systems ?
 - Radial flow
 - Particle production in proton-proton collisions
 - Baryon/meson ratio
- Strangeness production
- Conclusions

Collision systems at the LHC

Lead-lead (Pb-Pb)

deconfined phase of matter (quark gluon plasma/QGP)

hydrodynamic evolution

• Proton-lead (p-Pb)

intermediate system between the Pb–Pb and the proton-proton used to distinguish hot from cold nuclear matter effects

Proton-proton (pp)

used as a reference for the Pb–Pb and p–Pb cases

- \rightarrow deconfinement *not* expected
- \rightarrow collectivity *not* expected

ALICE: A Large Ion Collider Experiment

Optimised for the study of heavy-ion collisions

- Moderate magnetic field (B = 0.5 T) in the midrapidity region
- Low-momentum tracking down to p_T ~ 100 MeV/c
- High granularity to cope with the high occupancy
- Extensive particle identification (*PID*) capabilities

Int. J. Mod. Phys. A29 (2014) 1430044

ALICE: A Large Ion Collider Experiment

Optimised for the study of heavy-ion collisions

- Moderate magnetic field (B = 0.5 T) in the midrapidity region
- Low-momentum tracking down to *p*_T ~ 100 MeV/*c*
- High granularity to cope with the high occupancy
- Extensive particle identification (*PID*) capabilities

Int. J. Mod. Phys. A29 (2014) 1430044

Particle multiplicity

- Multiplicity is defined as the number of charged particles per event
- In ALICE multiplicity classes are selected based on the amplitude of the signal in the V0 detector at forward rapidity

 $2.8 < \eta < 5.1$ VOA

 $-3.7 < \eta < -1.7$ VOC

 Related to the collision centrality in Pb–Pb (collision impact parameter)

Nicolò Jacazio

Outline of this presentation

- Collision systems at the LHC
- The ALICE experiment
- Particle multiplicity
- → Signs of collectivity in small collision systems ?
 - Radial flow
 - Particle production in proton-proton collisions
 - Baryon/meson ratio
 - Strangeness production
 - Conclusions

Collective evolution in Pb-Pb - radial flow

$$\begin{array}{l} E \hspace{0.1cm} \frac{d^{3}N}{dp^{3}} \propto \int_{0}^{R} m_{T} \hspace{0.1cm} I_{0} \hspace{0.1cm} \left(\frac{p_{T} \hspace{0.1cm} \sinh \rho}{T_{kin}} \right) \hspace{0.1cm} K_{1} \hspace{0.1cm} \left(\frac{m_{T} \hspace{0.1cm} \cosh \rho}{T_{kin}} \right) \hspace{0.1cm} r \hspace{0.1cm} dr \\ \\ \text{with} \hspace{0.1cm} m_{T} = \sqrt{m^{2} + p_{T}^{2}} \hspace{0.1cm} \text{and} \hspace{0.1cm} \rho = \tanh^{-1} \left(\beta_{T} \right) \\ \\ \\ \text{Schnedermann, Sollfrank and Heinz Phys. Rev. C 48, 2462} \end{array}$$

- Mass dependence of the spectral shape \rightarrow radial flow
- Blast Wave
 - ightarrow simplified hydrodynamic model
- Well describes spectral evolution \rightarrow three parameters: m_T , β_T and T_{kin}

 $eta_{\mathrm{T}}
ightarrow \mathrm{radial}$ velocity

 $T_{kin} \rightarrow$ kinetic freeze-out temperature (particle decoupling)

Light-flavour particle spectra in pp

Nicolò Jacazio

Spectra modification

Ratio to INEL>0

- Ratio to multiplicityintegrated (INEL > 0) spectra
- "Hardening" of the spectral shape at higher multiplicity
- Similar to what is observed in Pb-Pb
- Different behaviour for baryons and mesons

Nicolò Jacazio

Baryon to meson ratio

 $\Rightarrow~$ Depletion at low ${m
ho_{T}}$ and enhancement at intermediate ${m
ho_{T}}$ for ${m
ho}/\pi$

• No significant multiplicity evolution for the ratio ${\it K}/\pi$ as a function of ${\it p}_{\rm T}$

Nicolò Jacazio

Baryon to meson ratio in pp, p–Pb and Pb–Pb

- $\Rightarrow~$ Depletion at low ${m
 ho_{T}}$ and enhancement at intermediate ${m
 ho_{T}}$ for ${m
 ho}/\pi$
- \Rightarrow Observed in all three systems (collective evolution ?)

Nicolò Jacazio	INFN2016	14 Novembre 2016	10 / 14

Blast Wave fits in pp

- Highest multiplicity (class I+II)
- Simultaneous fit to the π , K and p spectra \rightarrow parameter extraction
- Hyperons follow the Blast Wave predicted with the π , K, p fit parameters
- ⇒ pp and p-Pb parameters follow the same trend

Nicolò Jacazio

Blast Wave fits in pp

- Highest multiplicity (class I+II)
- Simultaneous fit to the π , K and p spectra \rightarrow parameter extraction
- Hyperons follow the Blast Wave predicted with the π , K, p fit parameters
- ⇒ pp and p-Pb parameters follow the same trend

Nicolò Jacazio

Outline of this presentation

- Collision systems at the LHC
- The ALICE experiment
- Particle multiplicity
- Signs of collectivity in small collision systems ?
 - Radial flow
 - Particle production in proton-proton collisions
 - Baryon/meson ratio
- → Strangeness production
 - Conclusions

Production of strange particles

Nicolò Jacazio

INFN2016

14 Novembre 2016

13 / 14

Conclusions

- Similarities between the pp, p–Pb and Pb–Pb systems have been found at the LHC (collectivity, baryon/meson ratio and strangeness production)
- Observation of an increase in the production of strange particles in pp collisions as a function of multiplicity (arXiv:1606.07424)

Predictions from Monte Carlo models show poor agreement with data

 Further investigations are necessary to understand the underlying particle production mechanisms in smaller systems

Conclusions

- Similarities between the pp, p–Pb and Pb–Pb systems have been found at the LHC (collectivity, baryon/meson ratio and strangeness production)
- Observation of an increase in the production of strange particles in pp collisions as a function of multiplicity (arXiv:1606.07424)

Predictions from Monte Carlo models show poor agreement with data

 Further investigations are necessary to understand the underlying particle production mechanisms in smaller systems

Conclusions

- Similarities between the pp, p–Pb and Pb–Pb systems have been found at the LHC (collectivity, baryon/meson ratio and strangeness production)
- Observation of an increase in the production of strange particles in pp collisions as a function of multiplicity (arXiv:1606.07424)

Predictions from Monte Carlo models show poor agreement with data

 Further investigations are necessary to understand the underlying particle production mechanisms in smaller systems

Multiplicity classes

Fractions of the INEL>0 cross-section:

$\pi, \mathbf{K}, \mathbf{K_s^0}, \mathbf{p}, \mathbf{\Lambda}, \Xi$			K *		Ω			
Class	$rac{\sigma}{\sigma_{ extsf{inel}>0}}$	$\langle rac{d N_{Ch}}{d \eta} angle$	Class	$rac{\sigma}{\sigma_{\mathrm{INEL}>0}}$	$\langle rac{d N_{Ch}}{d \eta} angle$	Class	$\frac{\sigma}{\sigma_{\rm INEL>0}}$	$\langle rac{\mathrm{dN}_{\mathrm{Ch}}}{\mathrm{d}\eta} angle$
1	0 – 0.95% 0 95 – 4 7%	21.3 ± 0.6 16 5 ± 0 5	1	0 – 0.95% 0 95 – 4 7%	21.3 ± 0.6 16 5 + 0 5	1+11	0.0 - 4.7%	$\textbf{17.5} \pm \textbf{0.5}$
	4.7 – 9.5% 9 5 – 14%	13.5 ± 0.4 11.5 + 0.3	iii	4.7 - 9.5%	13.5 ± 0.4	III + IV	4.7 – 14%	$\textbf{12.5} \pm \textbf{0.4}$
V V	14 - 19% 19 - 28%	10.1 ± 0.3 8 45 + 0 25	IV + V VII	9.5 – 19% 28 – 38%	10.8 ± 0.3 6 72 \pm 0 21	v + vi	14 – 28%	$\textbf{8.99} \pm \textbf{0.27}$
	28 – 38% 38 – 48%	6.72 ± 0.21 5 40 + 0 17	VI	19 – 28% 38 – 48%	8.45 ± 0.25 5 40 + 0 17	VII + VIII	28 – 48 %	$\textbf{6.06} \pm \textbf{0.19}$
IX X	48 - 68% 68 - 100%	3.90 ± 0.14 2.26 ± 0.12	IX X	48 - 68% 68 - 100%	3.90 ± 0.14 2.26 ± 0.12	IX + X	48 - 100%	$\textbf{2.89} \pm \textbf{0.14}$

Int. J. Mod. Phys. A29 (2014) 1430044

- PID separation power for K/π and p/K for the ITS, TPC, TOF and HMPID detectors
- Combining the information from various detectors provides PID capabilities over a wide range of p_T

Nicolò Jacazio

• Inner Tracking System \rightarrow ITS

ALI-PUB-92287

EPJC 75 (2015) 226

- Inner Tracking System \rightarrow ITS
- Time Projection Chamber \rightarrow TPC

ALI-PUB-92283

dE/dx measurement

- Inner Tracking System \rightarrow ITS
- Time Projection Chamber \rightarrow TPC
- Time Of Flight \rightarrow TOF

EPJC 75 (2015) 226

- $\bullet \ \ \textbf{Inner Tracking System} \rightarrow \textbf{ITS}$
- Time Projection Chamber \rightarrow TPC
- Time Of Flight \rightarrow TOF
- High Momentum Particle IDentification → HMPID

EPJC 75 (2015) 226

Cherenkov angle measurement

$\langle {m p_T} angle$ in pp, p–Pb and Pb–Pb collisions

 Very different regimes correspond to same values of dN_{ch}/dη

 In Pb–Pb (p_T) saturation at low multiplicity due to radial flow

pp e p-Pb show similar behaviour at low multiplicity

Baryon/meson ratio

- Baryon-meson enhancement in A–A
- Well described by hydro models
- Manifestation of the radial flow

