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INTRODUCTION



NUCLEAR
DEFORMATION

In the multipole hamiltonian H
M
 the balance between the proton-neutron correlations and the 

pairing force determine the nuclear shape. 

The Hamiltonian used to describe the nuclei can be separated in two parts:

Ĥ = Ĥm + ĤM

Multipole Hamiltoninan:

- Pairing force causes the 
superfluidity behaviour and 
drives the nuclear surface 
to a spherical shape
- Strong correlations 
between nucleons entails 
collective motions.

Monopolar Hamiltonian:

- Spherical mean field extracted 
from the interacted shell model
- Responsible of the shell 
evolution as function of the 
neutron/proton number Q
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QUADRUPOLE 
CORRELATIONS
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The nuclear quadrupole moment gives information on the nuclear shape (Q=0 spherical, 
Q>0 prolate, Q<0 oblate).

Experimentally the quadrupole moment can be deduced by measuring the reduced 
transition probability . 

→ Coulomb excitation reactions

→ Lifetime measurement 
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Z=50 ISOTOPES

The systematic of the first 2+ state 
excitation energy is well known for 
Sn isotopes and its behaviour is 
rather constant.

For neutron-deficient isotopes the 
information on the reduce transition 
probability suffers from large 
experimental uncertainties 
(~20%).

The neutron-deficient region has 
been investigated via Coulomb 
excitation reactions. 

Z=50



MOTIVATIONS

➢ Study of nuclear structure close to Z=N=50 shell closure.
Examine the robustness of the proton shell closure when N=50 is approached.

➢ Reduced transition probabilities B(E2; 0+→2+) and B(E2; 2+→4+) of 106-108Sn, via 
direct lifetime measurement.
Complementary information to previous Coulomb excitation experiments.

➢ First lifetime measurement with plunger device in this region.



EXPERIMENTAL
DETAILS



AGATAAGATA

VAMOS++VAMOS++

MULTI-NUCLEON TRANSFER REACTION

Beam: 106Cd @ 770 MeV Target: 92Mo 0.715 mg/cm2

Degrader: 24Mg 1.6 mg/cm2

      AGATA compact configuration
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The ray energy is Doppler corrected for 
u
, so in the 

spectrum a second under-corrected shifted peak appears.

The relative intensity of the two peaks depends on the TOF 
between target and degrader (

s
,distance) and lifetime. 



AGATA

8 ATC mounted = 24 not Compton-
suppressed HPGe 

- 36 segments per crystal
- 2 cores per crystal

Comparing segments and cores 
signals:

✔ dead segments correction
✔ neutron damage correction
✔ Pulse-Shape Analysis
✔ gamma tracking

X beam



AGATA
Tracking

The interaction positions from PSA are used 
for reconstructing the tracked -ray.

➢ Photo-electric absorption process has 
large probability in the range 90-250 keV
+ distance to next interaction point more 
than 4cm

➢ For Compton scattering interaction points 
belonging to the same photon are clustered 
in a limited angular range

➢ Pair-production events occur for high 
energy  rays
+ at least 3 interaction points with total 
energy more than 1022 keV 

Tracking parameters have been optimized by improving the peak-to-total ratio without 
rejecting good events (reducing the integral of the peak).



AGATA
Efficiency

Energy Resolution: 3.92 keV @ 1408 keV
   2.78‰
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VAMOS++

VAMOS++, large angular acceptance 
magnetic spectrometer, gives a complete 
identification (Z, A, ) of the recoils event-by-
event.

● IC measures the energy loss and gives 
information about the Z of the recoils

● DC allows the trajectory reconstruction for 
A identification

● dual position sensitive MWPC gives the 
recoil entrance velocity vector , crucial for 
the Doppler-correction

MWPC
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PRELIMINARY
RESULTS



PID – Mass

Fission

Transfer
M/M~1/140 

M/M~1/170 

all Z



PID – Mass

Inelastic Scattering

Multi-
nucleon Tra

nsfer

Events from the inelastic 
scattering of the beam 
overwhelm the ±1n peaks in the 
mass identification.

Z=48

By gating on E
TOT

, it separates the multi-

nucleon transfer event from the inelastic 
scattering ones.



PID – Mass

Z=50

2
1

+ 106Cd

By gating on E
TOT

, it is possible to reduce 
the contaminations from the inelastic-
scattering events, without rejecting good 
events.



106Cd


 
= 10.1 (4) ps

Gating on the shifted component of 4
1

+→2
1

+ transition, 
the lifetime of 2

1
+→0

gs
+ transition can be measured via 

Differential Decay Curve Method (DDCM). 
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= 10.0 (9) ps 

bib 
= 10.5 (1) ps



108Sn

15 m

The transition of interest 2+→0+ 
and 4+→2+ are clearly visible.

The energy of the 8+→6+ transition 
(1196 keV) is similar to the energy 
of the 2+→0+ shifted component: 
Qvalue gate is required to reduce 
the possible feeding from this 
state.
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CONCLUSIONS



➢ Reduced transition probability provides information about the collective behaviour of the 
nucleus.  

➢ The tracking in AGATA has been optimized in order to improve both the P/T and the 
efficiency

➢ VAMOS++ provides a complete identification of the recoils, giving informations on the 
velocity vector, the atomic number Z and the mass A.

➢ Coupling AGATA detectors with the mass spectrometer allows to select the channel of 
interest.
Moreover, thanks to the unique performances of AGATA and VAMOS++ it is possible to 
apply a more precise event-by-event Doppler correction, which improves the sensibility of 
the lifetime measurement via Doppler-shift techniques.

➢ The lifetime of the first 2+ of 106Cd has been measured via DCM and DDCM in order to 
check plunger absolute distances and to validate the experimental method.

➢ 108Sn clearly visible, but a Q-value gate may be necessary to reduce the feeding from 
higher excitation energy states. More work is required for 106Sn because of the possible 
contamination from the inelastic beam.
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