

Terzo Incontro Nazionale di Fisica Nucleare INFN2016

Study of Quadrupole Correlations in Neutron-Deficient Sn Isotopes via Lifetime Measurements

Marco Siciliano

Frascati, 14th - 16st November 2016

INTRODUCTION

NUCLEAR DEFORMATION

The Hamiltonian used to describe the nuclei can be separated in two parts:

$$\hat{H} = \hat{H}_m + \hat{H}_M$$

Monopolar Hamiltonian:

Spherical mean field extracted from the interacted shell model
Responsible of the shell evolution as function of the neutron/proton number

Multipole Hamiltoninan:

Pairing force causes the superfluidity behaviour and drives the nuclear surface to a spherical shape
Strong correlations between nucleons entails collective motions.

lstituto Nazionale di Fisica Nucleare

INFN

In the multipole hamiltonian $H_{_M}$ the balance between the proton-neutron correlations and the pairing force determine the **nuclear shape**.

QUADRUPOLE CORRELATIONS

INFN

Istituto Nazionale di Fisica Nucleare

The nuclear quadrupole moment gives information on the **nuclear shape** (Q=0 spherical, Q>0 prolate, Q<0 oblate).

$$Q_0 = \sqrt{\frac{4\pi}{5}} \langle \psi_i | r^2 Y_0^2 | \psi_f \rangle$$

Experimentally the quadrupole moment can be deduced by measuring the **reduced** transition probability $B(E2; I_i \rightarrow I_f) \propto e^2 Q_0^2$.

Z=50 ISOTOPES

The systematic of the first 2⁺ state excitation energy is well known for Sn isotopes and its behaviour is rather constant.

INFN

Istituto Nazionale di Fisica Nucleare

For neutron-deficient isotopes the information on the reduce transition probability suffers from **large experimental uncertainties** (~20%).

The neutron-deficient region has been investigated via Coulomb excitation reactions.

MOTIVATIONS

INFN

Istituto Nazionale di Fisica Nucleare

Study of nuclear structure close to Z=N=50 shell closure. Examine the robustness of the proton shell closure when N=50 is approached.

- ➤ Reduced transition probabilities B(E2; 0⁺ → 2⁺) and B(E2; 2⁺ → 4⁺) of ¹⁰⁶⁻¹⁰⁸Sn, via direct lifetime measurement. <u>Complementary information</u> to previous Coulomb excitation experiments.
- First lifetime measurement with plunger device in this region.

INFN Istituto Nazionale di Fisica Nucleare

EXPERIMENTAL DETAILS

MULTI-NUCLEON TRANSFER REACTION

Beam: ¹⁰⁶Cd @ 770 MeV

Target: ⁹²Mo 0.715 mg/cm² Degrader: ²⁴Mg 1.6 mg/cm² INFN

Istituto Nazionale di Fisica Nucleare

AGATA compact configuration

Differential Plunger

Istituto Nazionale di Fisica Nucleare

The γ -ray energy is Doppler corrected for β_u , so in the spectrum a second under-corrected shifted peak appears.

The relative intensity of the two peaks depends on the TOF between target and degrader (β_s ,distance) and lifetime.

INFN

Laboratori Nazionali di AGATA Legnaro INFN Istituto Nazionale di Fisica Nucleare

Hits Pattern

8 ATC mounted = 24 not Comptonsuppressed HPGe

- 36 segments per crystal
- 2 cores per crystal

Comparing segments cores and signals:

- dead segments correction
- neutron damage correction
- Pulse-Shape Analysis
- gamma tracking

AGATA Tracking

The interaction positions from PSA are used for reconstructing the tracked γ -ray.

INFN

lstituto Nazionale di Fisica Nucleare

- Photo-electric absorption process has large probability in the range 90-250 keV
 + distance to next interaction point more than 4cm
- For Compton scattering interaction points belonging to the same photon are clustered in a limited angular range
- Pair-production events occur for high energy γ rays

+ at least 3 interaction points with total energy more than 1022 keV

Tracking parameters have been optimized by improving the peak-to-total ratio without rejecting good events (reducing the integral of the peak).

AGATA Efficiency

INFN Istituto Nazionale di Fisica Nucleare

Energy Resolution: 3.92 keV @ 1408 keV 2.78‰

VAMOS++

Laboratori Nazionali di Legnaro

VAMOS++, large angular acceptance magnetic spectrometer, gives a complete identification (Z, A, β) of the recoils event-by-event.

INFN

Istituto Nazionale di Fisica Nucleare

- IC measures the energy loss and gives information about the Z of the recoils
- DC allows the trajectory reconstruction for A identification
- dual position sensitive **MWPC** gives the recoil entrance velocity vector β , crucial for the Doppler-correction

INFN Istituto Nazionale di Fisica Nucleare

PRELIMINARY RESULTS

PID – Mass

Z=48

×10³ O900

800

700

600

500

400

300

200

100

101

102

103

104

105

106

107

108

109

PID – Mass

110 Mass [a.m.u.]

Events from the inelastic \int_{112}^{114} scattering of the beam overwhelm the ±1n peaks in the mass identification.

By gating on E_{TOT} , it separates the multinucleon transfer event from the inelastic scattering ones.

INFN

Istituto Nazionale di Fisica Nucleare

500

0

104

106

110

108

112

INFN

Istituto Nazionale di Fisica Nucleare

114 Mass [a.m.u.]

600

400

200

Gating on the shifted component of $4_1^+ \rightarrow 2_1^+$ transition, the lifetime of $2_1^+ \rightarrow 0_{gs}^+$ transition can be measured via Differential Decay Curve Method (DDCM).

 $\tau = \frac{I_A^u(x)}{\frac{d}{dx}I_A^s(x)} \cdot \frac{1}{v}$

1160

1180

108Sn

2⁺ → **0**⁺ 654321 654321 654321 654321 654321 654321 654321 654321 654321 **31 µm** ՊԱՎՈ ᢣᡡᡀᡗᡀᡗᡀᠾᡊᢩᠬᡡᡘᡀᡡ᠕ᡁ᠕ᡁ 36 µm ՆԱՎ ൝^{൜൜൜൜൜൜} **41 µm** ᡙᡙ᠕ᢧᡙ᠕ᢧᠬ᠁᠒ᡁ᠆ᢦᠬᢧᢌᢌᠴ᠕ᡁ 51 µm ՆՐԴԳԱ ᠕ᢩᡣ᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕ 171 µm 1րՄել പி $^{\rm Lo}$ 221 µm <u>എന്നം</u>സുസിനസിന്നം 321 um ᢣ᠋ᡗᡊᡙᠺᡁᠬ᠆ᡳᡁᢊᡳᠬᢧᡊᠧᠰᠧᡡᠥᠬ᠕ᠬ 521 um

1200

Energy [keV]

1220

1240

The transition of interest $2^+ \rightarrow 0^+$ and $4^+ \rightarrow 2^+$ are clearly visible.

INFN

Istituto Nazionale di Fisica Nucleare

The energy of the $8^+ \rightarrow 6^+$ transition (1196 keV) is similar to the energy of the $2^+ \rightarrow 0^+$ shifted component: Qvalue gate is required to reduce the possible feeding from this state.

CONCLUSIONS

- Reduced transition probability provides information about the collective behaviour of the nucleus.
- The tracking in AGATA has been optimized in order to improve both the P/T and the efficiency
- VAMOS++ provides a complete identification of the recoils, giving informations on the velocity vector, the atomic number Z and the mass A.
- Coupling AGATA detectors with the mass spectrometer allows to select the channel of interest. Moreover, thanks to the unique performances of AGATA and VAMOS++ it is possible to apply a more precise event-by-event Doppler correction, which improves the sensibility of the lifetime measurement via Doppler-shift techniques.
- The lifetime of the first 2⁺ of ¹⁰⁶Cd has been measured via DCM and DDCM in order to check plunger absolute distances and to validate the experimental method.
- ¹⁰⁸Sn clearly visible, but a Q-value gate may be necessary to reduce the feeding from higher excitation energy states. More work is required for ¹⁰⁶Sn because of the possible contamination from the inelastic beam.

M. SICILIANO^{1,2}, J.J. VALIENTE-DOBÓN², A. GOASDUFF², D. BAZZACCO^{1,3}, G. BENZONI⁴, T. BRAUNROTH⁵, N. CIEPLICKA⁴, F.C.L. CRESPI^{4,6}, E. CLEMENT⁷, G. DE FRANCE⁷, M. DONCEL⁸, S. ERTÜRK⁹, C. FRANSEN⁵, A. GADEA¹⁰, G. GEORGIEV¹¹, A. GOLDKUHLE⁵, U. JAKOBSSON¹², G. JAWORSKI², P.R. JOHN^{1,3}, I. KUTI¹³, A. LEMASSON⁷, A. LOPEZ-MARTENS¹¹, H. LI¹², S. LUNARDI^{1,3}, T. MARCHI², D. MENGONI^{1,3}, C. MICHELAGNOLI⁷, T. MIJATOVIC¹⁴, C. MÜLLER-GATERMANN⁵, D.R. NAPOLI²,

A. NAVIN⁷, J. NYBERG¹⁵, M. PALACZ¹⁶, R.M. PÉREZ-VIDAL¹⁰, M. REJMUND⁷, B. SAYĞI^{2,17}, D. SOHLER¹³, S. SZILNER¹⁴, D. TESTOV¹

¹Dipartimento di Fisica e Astronomia, Università di Padova, Padova, Italy. ²INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy. ³INFN. Sezione di Padova. Padova. Italy. ⁴INFN, Sezione di Milano, Milano, Italy. ⁵Institut für Kernphysik. Universität zu Köln, Cologne, Germany. ⁶Dipartimento di Fisica, Università di Milano, Milano, Italy. ⁷Grand Accélérateur National d'Ions Lourds, Caen, France. ⁸Universidad de Salamanca, Salamanca, Spain. ⁹Niğde Üniversitesi, Niğde, Turkey. ¹⁰Instituto de Física Corpuscular, Valencia, Spain. ¹¹CSNSM, CNRS-IN2P3, Université Paris Sud, Orsay, France. ¹²Kungliga Tekniska Högskolan, Stockholm, Sweden. ¹³INR, Hungarian Academy of Sciences, Debrecen, Hungary. ¹⁴Ruđer Bošković Institute and University of Zagreb, Zagreb, Croatia. ¹⁵Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden. ¹⁶Heavy Ion Laboratory, Warsaw, Poland. ¹⁷Ege Üniversitesi, İzmir, Turkey.

THANK YOU FOR YOUR ATTENTION