Study of the ¹⁷O(n,α)¹⁴C reaction: extension of the Trojan Horse Method to neutron induced reactions

G.L. Guardo^a, L. Lamia^{a,b}, C. Spitaleri^{a,b}, M. Gulino^{a,c}, X.D. Tang^d, B. Bucher^d, V. Burjan^e, M. Couder^d, P. Davies^d, R. deBoer^d, X. Fang^d, V.Z. Goldberg^f, V. Kroha^e, L. Lamm^{d,†}, M. La Cognata^a, C. Ma^d, J. Mrazek^e, A.M. Mukhamedzhanov^f, M. Notani^d, S. OBrien^d, R.G. Pizzone^a, G.G. Rapisarda^{a,b}, D. Roberson^d, M.L. Sergi^{a,b}, W. Tan^d, I.J. Thompson^h, M. Wiescher^d

a) INFN Laboratori Nazionali del Sud, Catania, Italy

- b) Dipartimento di Fisica ed Astronomia, Università degli Studi di Catania, Catania, Italy
- c) Università degli Studi di Enna "KORE", Enna, Italy
- d) Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, IN, USA
- e) Nuclear Physics Institute of ASCR, Rez, Czech Republic
- f) Cyclotron Institute, Texas A&M University, College Station TX, USA
- g) China Institute of Atomic Energy, Beijing, China and

h) Lawrence Livermore National Laboratory, Livermore, CA, USA

ASTROPHYSICAL MOTIVATION

Inhomogeneus Big Bang Nucleosinthesys (IBBN) [1-4]
The reaction ¹⁷O(n, α)¹⁴C represents one of the main channel for ¹⁴C production, a key element for the ²²Ne production via
¹⁴C(α, γ)¹⁸O(n, γ)¹⁹O(β)¹⁹F(n, γ)²⁰F(β)²⁰Ne(n, γ)²¹Ne(n, γ)²²Ne

STATUS OF THE ART

Direct measurements have shown the population of the two excited states at

• Weak component s-process [5-6]

¹⁷O(n,α)¹⁴C and ¹⁷O(α,n)²⁰Ne since they act as a neutron poison and a recycle channel during s-process nucleosinthesys in massive stars (M>8M_Θ)

> Temperature $\rightarrow 0.8 \cdot 10^8 < T < 11 \cdot 10^8 K$ Energy range $\rightarrow ~0-100 \text{ keV}$

10² 10²1

Subthreshould peak contribution Suppressed by centrifugal barrier Direct data (the reaction rate differ by a factor 2)

energies 8213 keV and 8282 keV and the influence of the sub-threshold level at 8038 keV. Moreover, the 8125 keV state of ¹⁸O would be populated by f-wave neutrons, but due to the high orbital momentum barrier, the cross section is too low for direct measurement. [7-11]

E _{c.m.} (keV)	¹⁸ O [*] (MeV)	Jπ
-7	8.039	1-
75	8.125	5⁻
166	8.213	2+
236	8.282	3⁻

The idea of the THM is to extract the cross section of an astrophysically relevant twobody reaction $A+x \rightarrow c+C$ at low energies from a suitable threebody reaction $a+A \rightarrow c+C+s$

THE TROJAN HORSE METHOD

The nucleus **a** (TH nucleus) is chosen with a strong $\mathbf{x} \oplus \mathbf{s}$ clusters structure and, in the

In the <u>Plane Wave Impulse Approximation</u> (PWIA) the cross section of the three body reaction can be factrorized as [17-19]:

Impulse Approximation description, only **x** interact with **A**, whereas **s** is considered to be spectator to the reaction. [12-16]

Three body	factor	trasform for the	
measured	Juctor	x-s intercluster	
cross section		motion	

relevant two body cross section

THE EXPERIMENT

 The reaction ¹⁷O(n,α)¹⁴C was studied via the ²H(¹⁷O,α¹⁴C)p, V_{coul}=2.3 MeV;
The deuteron is the TH nucleus. B=2.2 MeV, |p_s|=0 MeV/c;
The neutron act as partecipant

 Experiment performed at ISNAP at the University of Notre Dame (USA);

 $\checkmark E_{beam}(^{17}O) = 43.5 MeV;$

 \checkmark Target thickness CD₂ ~150 µg/cm²;

✓IC filled with ~50 mbar isobutane gas;

Angular position to cover the QF angular region

✓ Symmetric set-up in order to increase the statistic.

THE ANALYSIS

• **Reaction Channel Selection** *Experimental* Q-value spectrum in agreement with the theoretical prediction of -0.407 MeV (arrow) for the ²H(¹⁷O,α¹⁴C)p reaction. No additional process takes place as a single peak show up in the spectrum.

• Selection of the QF Mechanism Experimental distribution (black points) for the proton-momentum values compared with the theoretical Hulthèn function (red line). The agreement is a necessary condition for the presence of the QF-mechanism.

<u>RESULTS AND CONCLUSIONS</u>

Reaction rate

R-matrix fit

REFERENCES

- [1] R. Nakamura et al., *arXiv:1007.0466v1*, 2010.
- [2] T. Kajino et al., *Nuclear Physics* A588 (339c) 1995.
- [3] D. J. Fixen & J. C. Mather, *Astrophysical Journal* 581 (817) 2002.
- [4] J. H. Applegate et al., *Astrophysical Journal* 329 (572) 1988.
- [5] F. Kappeler et al., *arXiv:1012.5218v1*, 2010.
- [6] M. Pignatari et al., Astrophysical Journal 710 (1557) 2010.
- [7] F. Ajzenberg-Selove, *Nuclear Physics* A475 (1) 1987.
- [8] R. M. Sanders, *Physical Review* 104 (1434) 1956.
- [9] P. E. Koehler & S. M. Graff, *Physical Review* C44 (2788) 1991.
- [10] H. Schatz et al., *Astrophysical Journal* 413 (750) 1993.
- [11] J. Wagemans et al., *Physical Review* C65 (34614) 2002.
- [12] C. Spitaleri et al., *Physical Review* C60 (55802) 1999.
- [13] C. Spitaleri et al., *Physical Review* C69 (55806) 2004.
- [14] G. Baur, *Physics Letters* B178 (135) 1986.
- [15] M. La Cognata et al., Astrophysical Journal 708 (796) 2010.
- [16] M. Gulino et al., *Journal Physics* G37 (125105) 2010.
- [17] M. Jain et al., *Nuclear Physics* A153 (49) 1970.
- [18] G. F. Chew & G. C. Wick., *Physical Review* 85 (636) 1952.
- [19] I. Slaus et al., *Nuclear Physics* A286 (67) 1977.
- [20] G.L. Guardo et al., *Physical Review* C, submitted.