

Isospin Symmetry Breaking in Mirror Nuclei ${}^{23}Mg - {}^{23}Na$

A. Boso^{1,2*}, S. M. Lenzi^{1,2}, F. Recchia^{1,2}, S. Aydin³, M. A. Bentley⁴, B. Cederwall⁵, E. Clement⁶, G. de France⁶, A. Di Nitto⁷, A. Dijon⁶, M. Doncel⁵, F.Ghazi-Moradi⁵, A. Gottardo⁸, T. Henry⁴, T. Hüyük⁹, G. Jaworski¹⁰, P.R. John^{1,2}, K. Juhsz¹¹, I. Kuti¹², B. Melon¹³, D. Mengoni^{1,2}, C. Michelagnoli^{1,2}, V. Modamio⁸, D.Ř. Napoli⁸, B.M. Nyakó¹², J. Nyberg¹⁴, M. Palacz¹⁰, J.J. Valiente-Dobón⁸

¹ Dipartimento di Fisica e Astronomia Università di Padova, Padova, Italy. ² INFN, Sezione di Padova, Italy. ³ Aksaray Universitesi, Department of Physics, Aksaray, Turkey ⁴ University of York, York, United Kingdom. ⁵ Royal Institute of Technology, Stockholm, Sweden ⁶ GANIL, Caen, France. ⁷ Dipartimento di Scienze Fisiche and INFN, Sezione di Napoli, Napoli, Italy ⁸ INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) Italy. ⁹ IFIC-CSIC, Valencia, Spain. ¹⁰ Heavy Ion Laboratory, Warsaw University, Warszawa, Poland ¹¹ University of Debrecen, H-4032 Debrecen, Hungary ¹² MTA Atomki, H-4001 Debrecen, Hungary ¹³ Dipartimento di Fisica e INFN, Sezione di Firenze, Firenze, Italy ¹⁴ Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden

Physics Case

Isospin Symmetry implies identical level schemes for mirror nuclei. **Differences** in **excitation energies** in mirror nuclei are therefore an evidence of Isospin Symmetry Breaking (ISB)

Discussion: "Standard" shell model approach

- ► **USD** interaction
- Coulomb term V_{CM} calculated in harmonic oscillator basis
- \triangleright Radial term V_{Cm} obtained from the occupation numbers of the $s_{1/2}$ shell

The Mirror Energy Differences (MED) are defined as: $\mathsf{MED}_{\mathsf{J},\mathsf{T}} = \mathsf{E}^*_{\mathsf{J},\mathsf{T},\mathsf{T}_z=-\mathsf{T}} - \mathsf{E}^*_{\mathsf{J},\mathsf{T},\mathsf{T}_z=\mathsf{T}}$ and give information on nuclear structure.

- ► The main contribution to MED comes from the **Coulomb interaction** This gives information on:
 - ▶ The way the nucleus **aligns** its protons
 - ▶ The nuclear **radius variation** with **J**
 - Single particle energies of different orbitals
 - ► In the $f_{7/2}$ shell an additional ISB term of **nuclear** origin must be added to reproduce the experimental MEDs J=2 Anomaly

⁴⁹Mn-⁴⁹Cr

Correction applied to single particle energies ► "Nuclear" ISB term V_B parameterized from A=42 mirror nuclei

- ► The **Coulomb** term reproduces the trend of the MED
- ► The V_{Cm} term is needed: this confirms the **importance** of the $s_{1/2}$ shell
- "Nuclear" ISB term VB makes the things **worse**: J=2 Anomaly??

Discussion: Alternative Approach

- Realistic NN N3LO interaction which naturally includes Coulomb term, single particle energy corrections and nuclear ISB term
- **Different potential wells** for π and ν : $\hbar \omega_{\pi,\nu}$ is strictly related to the radii $\mathbf{r}_{\pi,\nu}$. \mathbf{r}_{π} is fitted to the experiment. \mathbf{r}_{ν} is obtained from the binding energies. **Different** $\hbar \omega_{\pi,\nu}$ for each nucleus

The experiment

- Aim: Study mirror nuclei ${}^{23}Mg {}^{23}Na$ up to high spin ► Reaction: ${}^{16}O + {}^{12}C$ at 60-70 MeV. 23 Mg $-^{23}$ Na populated in α n- α p channels respectively
- Experimental setup

 \triangleright **EXOGAM**: 11 HPGe Clover for γ -ray detection **DIAMANT**: 80 Csl scintillators for charged particles detection ▶ **NEUTRON WALL**: 50 liquid scintillators for neutron detection

Results: γ -ray spectra and level schemes

 \triangleright Radial term V_{Cm} obtained from the occupation numbers of the $s_{1/2}$ shell

- ► **N3LO** interaction reproduces the trend of the MED
- Nuclear ISB term naturally taken into account
- ► The V_{Cm} term is still needed: **importance** of the $s_{1/2}$ shell confirmed

Perspectives

- ► Include the radial term V_{Cm} in the interaction
 - \rightarrow **Different** $\hbar \omega_{\pi,\nu}$ for each J
- Idea: exploit the **relation** between

Figure 1: γ -ray spectra and level schemes of mirror nuclei ²³Mg $-^{23}$ Na

 $\Delta \hbar \omega = \hbar \omega_{\pi} - \hbar \omega_{\nu}$ and the **difference** in occupation numbers of π and ν in the $s_{1/2}$ shell (related to **neutron skin**)

Application of the same approach to the **other nuclei** in the **sd shell** > Application of the same approach to the $f_{7/2}$ shell: J=2 Anomaly?

References

A. P. Zuker et al., PRL 89, 142502 (2002) M.A. Bentley and S.M. Lenzi, Prog. Part. Nucl. Phys. 59 497 (2007) J. Bonnard et al., PRL 116, 212501 (2016)

*alberto.boso@pd.infn.it