Isospin Symmetry Breaking in Mirror Nuclei

23Mg – 23Na

A. Boso1,2, S. M. Lenzi1,2, F. Recchia1,2, S. Aydin3, M. A. Bentley4, B. Cederwall5, E. Clement6, G. de France6, A. Di Nitto7, A. Dijon6, M. Doncel5, F. Ghazi-Moradi9, A. Gottardo6, T. Henry4, T. Hiyûk9, G. Jaworski10, P.R. John12, K. Juhasz11, I. Kuti12, B. Melon13, D. Mengoni12, C. Michelagnoli12, V. Modamiò8, D.R. Napoli8, B.M. Nyako12, J. Nyberg14, M. Palacz10, J.J. Valiente-Dobón8

1 Dipartimento di Fisica e Astronomia Università di Padova, Padova, Italy. 2 INFN, Sezione di Padova, Padova, Italy. 3 Aksaray University, Aksaray, Turkey. 4 University of York, York, United Kingdom. 5 Royal Institute of Technology, Stockholm, Sweden 6 GANIL, Caen, France. 7 Dipartimento di Scienze Fisiche e INFN, Sezione di Napoli, Napoli, Italy 8 INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) Italy. 9 IFIC-CSIC, Valencia, Spain. 10 Heavy Ion Laboratory, Warsaw University, Warszawa, Poland. 11 University of Debrecen, H-4032 Debrecen, Hungary 12 MTA Atomki, H-4001 Debrecen, Hungary 13 Dipartimento di Fisica e INFN, Sezione di Firenze, Firenze, Italy. 14 Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden.

Physics Case

Isospin Symmetry implies identical level schemes for mirror nuclei. Differences in excitation energies in mirror nuclei are therefore an evidence of Isospin Symmetry Breaking (ISB)

The Mirror Energy Differences (MED) are defined as:

$$\text{MED}_{J,T} = E_{J,T,T=+1} - E_{J,T,T=-1}$$

and gives information on nuclear structure.

- The main contribution to MED comes from the Coulomb interaction.
- The way the nucleus aligns its protons
- The nuclear radius variation with J
- Single particle energies of different orbitals

In the f$_{7/2}$ shell an additional ISB term of nuclear origin must be added to reproduce the experimental MEDs

J=2 Anomaly

Is it needed also in other mass regions?

The experiment

- Aim: Study mirror nuclei 23Mg – 23Na up to high spin
- Reaction: 16O + 12C at 60-70 MeV.
- 23Mg – 23Na populated in α-α channels respectively
- Experimental setup
 - EXOGAM: 11 HPGe Clover for γ-ray detection
 - DIAMANT: 80 CsI scintillators for charged particles detection
 - NEUTRON WALL: 50 liquid scintillators for neutron detection

Results: γ-ray spectra and level schemes

![γ-ray spectra and level schemes](Image)

Discussion: “Standard” shell model approach

- USD interaction
- Coulomb term V_{CM} calculated in harmonic oscillator basis
- Radial term V_{R} obtained from the occupation numbers of the $s_{1/2}$ shell
- Correction applied to single particle energies
- “Nuclear” ISB term V_{B} parameterized from A=42 mirror nuclei

- The Coulomb term reproduces the trend of the MED
- The V_{CM} term is needed: this confirms the importance of the $s_{1/2}$ shell
- “Nuclear” ISB term V_{B} makes the things worse: J=2 Anomaly?

Discussion: Alternative Approach

- Realistic NN N3LO interaction which naturally includes Coulomb term, single particle energy corrections and nuclear ISB term

- Different potential wells for π and ν:

 - $\hbar \omega_{π,ν}$ is strictly related to the radii $r_{π,ν}$
 - $r_{π}$ is fitted to the experiment.
 - $r_{ν}$ is obtained from the binding energies.

- Different $\hbar \omega_{π,ν}$ for each nucleus

- Radial term V_{CM} obtained from the occupation numbers of the $s_{1/2}$ shell

- N3LO interaction reproduces the trend of the MED
- Nuclear ISB term naturally taken into account
- The V_{CM} term is still needed: importance of the $s_{1/2}$ shell confirmed

Perspectives

- Include the radial term V_{CM} in the interaction
 - Different $\hbar \omega_{π,ν}$ for each J

- Idea: exploit the relation between $\Delta \omega = \hbar \omega_{π} - \hbar \omega_{ν}$, and the difference in occupation numbers of π and ν in the $s_{1/2}$ shell (related to neutron skin)

- Application of the same approach to the other nuclei in the sd shell
- Application of the same approach to the f$_{7/2}$ shell: J=2 Anomaly?

References

- J. Bonnard et al., PRL 116, 212501 (2016)