Hidden-charm pentaquarks as a meson-baryon molecule with coupled-channels for $\bar{D}^{(*)}\Lambda_c$ and $\bar{D}^{(*)}\Sigma_c^{(*)}$

Yasuhiro Yamaguchi¹

¹INFN Genova, Italy

Yasuhiro Yamaguchi and Elena Santopinto , arXiv:1606.08330 [hep-ph].

Terzo Incontro Nazionale di Fisica Nucleare INFN2016 14-16 November 2016, Laboratori Nazionali di Frascāti, Itāly < ≧ → ⊇ → ⊃ <

Hadrons in the heavy quark region

- Hadron: Composite particle of Quarks and Gluons
- Constituent quark model (Baryon(qqq) and Meson $q\bar{q}$) has been successfully applied to the hadron spectra!

Hadrons in the heavy quark region

- Hadron: Composite particle of Quarks and Gluons
- Constituent quark model (Baryon(qqq) and Meson $q\bar{q}$) has been successfully applied to the hadron spectra!

Observation of two hidden-charm pentaguarks !! Introduction

DOI: 10.1103/PhysRevLett.115.072001

PACS numbers: 14.40.Pg, 13.25.Gv

What is the structure of the pentaquarks? Introduction

Compact pentaquark? Hadronic molecule?

W.L.Wang et al., (2011), G. Yang and J. Ping, (2015)

J.-J.Wu et al., (2010), C.W.Xiao et al., (2013)

What is the structure of the pentaquarks? Introduction

• Compact pentaquark? Hadronic molecule?

W.L.Wang et al., (2011), G. Yang and J. Ping, (2015)

```
J.-J.Wu et al., (2010), C.W.Xiao et al., (2013)
```

- Pentaquarks are close to the meson-baryon thresholds
 - \Rightarrow Hadronic molecules are a loosely bound state of hadrons.

3. 3

▲ 同 ▶ → ● 三

(Heavy Quark Spin Symmetry)

・ 同 ト ・ ヨ ト ・ ヨ ト

(Heavy Quark Spin Symmetry)

Charm (c), Bottom (b), Top (t)

・ 同 ト ・ ヨ ト ・ ヨ ト

(**Heavy Quark** Spin Symmetry)

Charm (c), Bottom (b), Top (t)

Coupled channels of MB Tensor force

Heavy Quark Spin Symmetry and Mass degeneracy Introduction

Heavy Quark Spin Symmetry (HQS) N.Isgur, M.B.Wise, PLB232(1989)113

- Suppression of Spin-spin force in $m_Q \rightarrow \infty$.
- e.g. $Q\bar{q}$ meson \Rightarrow Mass degeneracy of spin-0 and spin-1 states!

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• Coupled channels of $\overline{D}\Sigma_{c}$, $\overline{D}\Sigma_{c}^{*}$, $\overline{D}^{*}\Sigma_{c}$ and $\overline{D}^{*}\Sigma_{c}^{*}$!

(人間) (人) (人) (人) (人) (人) (人)

• $\bar{D}-\bar{D}^{*}$ and $\Sigma_{\rm c}-\Sigma_{\rm c}^{*}$ mixings due to the HQS

- Coupled channels of $\bar{D}\Sigma_c$, $\bar{D}\Sigma_c^*$, $\bar{D}^*\Sigma_c$ and $\bar{D}^*\Sigma_c^*$!
- In addition, Λ_c (*cqq*): $\overline{D}^{(*)}\Lambda_c$ channel?

▷ 6 meson-baryon components

(1)
$$\bar{D}\Lambda_{c}$$
, (2) $\bar{D}^{*}\Lambda_{c}$, (3) $\bar{D}\Sigma_{c}$, (4) $\bar{D}\Sigma_{c}^{*}$,
(5) $\bar{D}^{*}\Sigma_{c}$, (6) $\bar{D}^{*}\Sigma_{c}^{*}$

⇒ These components are mixed by...**Tensor force!**

6 meson-baryon components

(1)
$$\bar{D}\Lambda_{c}$$
, (2) $\bar{D}^{*}\Lambda_{c}$, (3) $\bar{D}\Sigma_{c}$, (4) $\bar{D}\Sigma_{c}^{*}$,
(5) $\bar{D}^{*}\Sigma_{c}$, (6) $\bar{D}^{*}\Sigma_{c}^{*}$

⇒ These components are mixed by...**Tensor force!**

Tensor force \Rightarrow Mixing of states with different ℓ

$$V^{tensor}(r) = g\mathbf{S}_{12}(\hat{\mathbf{r}}) \left(\mathbf{3} + \mathbf{mr} + \mathbf{m}^2 \mathbf{r}^2\right) \frac{\mathbf{e}^{-\mathbf{mr}}}{\mathbf{r}^3}$$

 $\triangleright \ \mathbf{S}_{12}(\hat{\mathbf{r}}) = \left[\mathbf{3}(\vec{\mathcal{O}}_1 \cdot \hat{\mathbf{r}})(\vec{\mathcal{O}}_2 \cdot \hat{\mathbf{r}}) - \vec{\mathcal{O}}_1 \cdot \vec{\mathcal{O}}_2 \right] \rightarrow S - D \text{ mixing}$

► T(r) → Strong attraction

Tensor force in NN $({}^{3}S_{1} - {}^{3}D_{1})$

• Tensor force is important in Deuteron, $NN({}^{3}S_{1} - {}^{3}D_{1})$

K. Ikeda, T. Myo, K. Kato and H. Toki, Lect. Notes Phys. 818, 165 (2010).

э

▲ 同 ▶ ▲ 王

Tensor force in NN $({}^{3}S_{1} - {}^{3}D_{1})$

• Tensor force is important in Deuteron, $NN({}^{3}S_{1} - {}^{3}D_{1})$

K. Ikeda, T. Myo, K. Kato and H. Toki, Lect. Notes Phys. 818, 165 (2010).

A (10) × (10) × (10)

- Tensor force in S D component produces the strong attraction!
- ▷ Couplings to the states with $\ell \neq 0$ are needed!

Main Subject: Pentaquarks

• Hadronic molecules formed by hidden-charm meson-baryon.

- Bound and resonant states of $ar{D}^{(*)} \Lambda_{
 m c} ar{D}^{(*)} \Sigma_{
 m c}^{(*)}$
- ▷ Coupling to $\bar{D}\Lambda_c$, $\bar{D}^*\Lambda_c$, $\bar{D}\Sigma_c$, $\bar{D}\Sigma_c^*$, $\bar{D}^*\Sigma_c$, and $\bar{D}^*\Sigma_c^*$
- \triangleright Coupling to the state with $\ell \neq 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

Main Subject: Pentaquarks

• Hadronic molecules formed by hidden-charm meson-baryon.

- ullet Bound and resonant states of $ar{D}^{(*)} oldsymbol{\Lambda}_{
 m c} ar{D}^{(*)} \Sigma_{
 m c}^{(*)}$
- ▷ Coupling to $\bar{D}\Lambda_{\rm c}$, $\bar{D}^*\Lambda_{\rm c}$, $\bar{D}\Sigma_{\rm c}$, $\bar{D}\Sigma_{\rm c}^*$, $\bar{D}^*\Sigma_{\rm c}$, and $\bar{D}^*\Sigma_{\rm c}^*$
- \triangleright Coupling to the state with $\ell \neq 0$

The full-coupled channel analysis has never been performed so far !

- 4 同 2 4 日 2 4 日 3

$\bar{D}^{(*)}B$ Interaction: Meson exchange potential

• Effective Lagrangian with heavy quark symmetry

R. Casalbuoni et al., Phys.Rept.281 (1997)145, Y.-R.Liu and M.Oka, PRD85(2012)014015

$$\begin{array}{c|c}
\bar{D}^{(*)} & B \\
\mathcal{L}_{m\bar{D}^{(*)}\bar{D}^{(*)}} & \pi, \rho, \omega, \sigma \\
\bar{D}^{(*)}\bar{D}^{(*)} & \overline{D}^{(*)} & \overline{D}^{(*)} : \overline{D} \text{ or } \overline{D}^{*} \\
\bar{D}^{(*)} & B & \overline{D}^{(*)} : \overline{D} \text{ or } \overline{D}^{*} \\
B : \Lambda_{c}, \Sigma_{c} \text{ or } \Sigma_{c}^{*} \\
B : \overline{D}_{c}, \Sigma_{c} \text{ or } \Sigma_{c}^{*} \\
\overline{D}^{(*)} & B & \overline{D}^{(*)} \\
Fig: \text{ Meson exchange diagram} \\
V_{\overline{D}^{(*)}B-\overline{D}^{(*)}B}^{\pi} = G \left[\vec{\mathcal{O}}_{1} \cdot \vec{\mathcal{O}}_{2}C(r) + S_{\mathcal{O}_{1}\mathcal{O}_{2}}T(r) \right] \\
C(r) : \text{ Central force, } T(r) : \text{ Tensor force}
\end{array}$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

$\overline{D}^{(*)}B$ Interaction: Meson exchange potential

• Effective Lagrangian with heavy quark symmetry

R. Casalbuoni et al., Phys.Rept.281 (1997)145, Y.-R.Liu and M.Oka, PRD85(2012)014015

$$\begin{array}{c|c} \bar{D}^{(*)} & B \\ \mathcal{L}_{m\bar{D}^{(*)}\bar{D}^{(*)}} & \pi, \rho, \omega, \sigma \\ \bar{D}^{(*)}\bar{D}^{(*)}\bar{D}^{(*)} & \bar{D}^{(*)} \mathcal{L}_{mBB} \\ \bar{D}^{(*)} & B \\ \bar{D}^{(*)} & B \\ \bar{D}^{(*)} & B \\ \bar{D}^{(*)} & R, \rho, \omega \text{ or } \sigma \\ \end{array}$$
Fig: Meson exchange diagram
$$V^{\pi}_{\bar{D}^{(*)}B-\bar{D}^{(*)}B} = G \left[\vec{\mathcal{O}}_{1} \cdot \vec{\mathcal{O}}_{2}C(r) + S_{\mathcal{O}_{1}\mathcal{O}_{2}}T(r) \right]$$

$$C(r): \text{ Central force, } T(r): \text{ Tensor force}$$

$$\bullet \text{ Form factor with common cutoff } \Lambda \leftarrow \text{ Free parameter}$$

$$F(\Lambda, \vec{q}\,) = \frac{\Lambda^2 - m_{\alpha}^2}{\Lambda^2 + |\vec{q}\,|^2} \quad \text{(fixed by the observed mass of } P_{\rm c}\text{)}$$

э

Results of $\overline{D}^{(*)}B$ states (2-body)

Exotic states (*cc̄qqq*)

Bound state and Resonance

- We solve the coupled-channel Schrödinger equations with $J^P=3/2^\pm,5/2^\pm$ and isospin I=1/2.
- Interaction: $\pi\rho\omega\sigma$ exchange potentials

 ▷ Observed Pentaquarks; P⁺_c(4380) and P⁺_c(4450)
 ▷ J^P assignment by LHCb; (3/2⁻, 5/2⁺), (3/2⁺, 5/2⁻), (5/2⁺, 3/2⁻)

< 🗇 > < 🖃 >

 ▷ Observed Pentaquarks; P⁺_c(4380) and P⁺_c(4450)
 ▷ J^P assignment by LHCb; (3/2⁻, 5/2⁺), (3/2⁺, 5/2⁻), (5/2⁺, 3/2⁻)

э

A ►

 \triangleright Observed Pentaguarks; $P_c^+(4380)$ and $P_c^+(4450)$ \triangleright J^P assignment by LHCb; $(3/2^{-}, 5/2^{+}), (3/2^{+}, 5/2^{-}), (5/2^{+}, 3/2^{-})$

 ▷ Observed Pentaquarks; P⁺_c(4380) and P⁺_c(4450)
 ▷ J^P assignment by LHCb; (3/2⁻, 5/2⁺), (3/2⁺, 5/2⁻), (5/2⁺, 3/2⁻)

Channel-coupling effects

• Obtained mass with Full channel coupling, without $\bar{D}^{(*)}\Lambda_c$ and without $\ell>0$ $(\ell>1)$

・ロト ・回ト ・ヨト ・ヨト

Channel-coupling effects

• Obtained mass with Full channel coupling, without $\bar{D}^{(*)}\Lambda_c$ and without $\ell > 0$ ($\ell > 1$)

(4月) (日) (日) 日

Channel-coupling effects

• Obtained mass with Full channel coupling, without $\bar{D}^{(*)}\Lambda_c$ and without $\ell > 0$ ($\ell > 1$)

• $\overline{D}^{(*)}\Lambda_c$ and $\ell > 0$ ($\ell > 1$) components are not negligible.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Summary

Subject: Hidden-charm meson-baryon molecules with full-channel coupling

11

- Observed Pentaquarks are close to the Meson-baryon thresholds.
 - → Hadronic molecules are considered.
- Heavy Quark Spin Symmetry induces the coupled-channel analysis of $\bar{D}^{(*)}\Lambda_{\rm c} \bar{D}^{(*)}\Sigma_{\rm c}^{(*)}$.
- Tensor force induces the couplings to the states with $\ell \neq 0$.
- Resonances of the $\bar{D}^{(*)}\Lambda_c \bar{D}^{(*)}\Sigma_c^{(*)}$ are obtained.
- The J^P assignment of $P_c^+(4380)$ and $P_c^+(4450)$ is $3/2^+$ and $5/2^-$, respectively.

Outlook

• Coupling to $J/\psi p$, cutoff Λ , $1/m_Q$ correction,

Back up

æ

・ロト ・回ト ・ヨト ・ヨト

J^P	Channels
3/2-	$\bar{D}\Lambda_{\rm c}(^2D), \ \bar{D}^*\Lambda_{\rm c}(^4S, ^2D, ^4D), \ \bar{D}\Sigma_{\rm c}(^2D), \ \bar{D}\Sigma_{\rm c}^*(^4S, ^4D),$
	$\bar{D}^*\Sigma_{\rm c}({}^4S, {}^2D, {}^4D), \ \bar{D}^*\Sigma_{\rm c}^*({}^4S, {}^2D, {}^4D, {}^6D, {}^6G)$
$3/2^{+}$	$\bar{D}\Lambda_{c}({}^{2}P), \ \bar{D}^{*}\Lambda_{c}({}^{2}P, {}^{4}P, {}^{4}F), \ \bar{D}\Sigma_{c}({}^{2}P), \ \bar{D}\Sigma_{c}^{*}({}^{4}P, {}^{4}F),$
,	$\bar{D}^*\Sigma_{\rm c}({}^2P, {}^4P, {}^4F), \ \bar{D}^*\Sigma_{\rm c}^*({}^2P, {}^4P, {}^6P, {}^4F, {}^6F)$
$5/2^{-}$	$\bar{D}\Lambda_{c}(^{2}D), \ \bar{D}^{*}\Lambda_{c}(^{2}D, ^{4}D, ^{4}G), \ \bar{D}\Sigma_{c}(^{2}D), \ \bar{D}\Sigma_{*}^{*}(^{4}D, ^{4}G).$
- /	$\bar{D}^*\Sigma_{\rm c}({}^2D, {}^4D, {}^4G), \ \bar{D}^*\Sigma_{\rm c}^*({}^6S, {}^2D, {}^4D, {}^6D, {}^4G, {}^6G)$
$5/2^{+}$	$\bar{D}\Lambda_{a}({}^{2}F), \ \bar{D}^{*}\Lambda_{a}({}^{4}P, {}^{2}F, {}^{4}F), \ \bar{D}\Sigma_{a}({}^{2}F), \ \bar{D}\Sigma^{*}({}^{4}P, {}^{4}F),$
0/=	$\bar{D}^* \Sigma_c ({}^4P, {}^2F, {}^4F), \ \bar{D}^* \Sigma_c ({}^4P, {}^6P, {}^2F, {}^4F, {}^6F, {}^6H)$
	Thresholds (MeV)
	$\bar{D}\Lambda_{c}(4153.5), \ \bar{D}^{*}\Lambda_{c}(4295.5), \ \bar{D}\Sigma_{c}(4320.5), \ \bar{D}\Sigma_{c}^{*}(4385.1),$
	$\bar{D}^*\Sigma_{\rm c}(4462.5), \ \bar{D}^*\Sigma_{\rm c}^*(4527.1)$

(本部) (本語)

문 🛌 문

Table: Obtained masses with full channel coupling (Full), without $\bar{D}^{(*)}\Lambda_c$ (w/o $\bar{D}^{(*)}\Lambda_c$) and without large orbital angular momentum ℓ (w/o $\ell > 0$ or w/o $\ell > 1$) in $\Lambda = 1400$ MeV.

J^P	Channels	Mass [MeV]
3/2-	Full	4136.0, 4307.9, 4348.7
	w/o $ar{D}^{(*)} \Lambda_{ m c}$	4278.4, 4400.4
	w/o $\ell > 0$	4220.4, 4376.6
3/2+	Full	4206.7, 4339.7
	w/o $ar{D}^{(*)} \Lambda_{ m c}$	—
	w/o $\ell > 1$	4275.3
5/2-	Full	4428.6
	w/o $ar{D}^{(*)} \Lambda_{ m c}$	—
	w/o $\ell > 0$	—

3

Table: Comparison of the lowest mass of hidden-charm meson-baryon molecules with $I(J^P) = 1/2(3/2^-)$ by this work with the early works. The obtained masses are shown in the second column in the unit of MeV. The value of this work is in $\Lambda = 1400$ MeV. The third column gives the channels which are considered in those works.

Ref.	Mass [MeV]	Channels
This work	4136.0	$ar{D} \Lambda_{ m c}, ar{D}^* \Lambda_{ m c}, ar{D} \Sigma_{ m c}, ar{D} \Sigma_{ m c}^*, ar{D}^* \Sigma_{ m c}, ar{D}^* \Sigma_{ m c}^*$
PRL 105 (2010)232001	4415	$ar{D}^*\Sigma_{ m c},ar{D}^*\Sigma_{ m c}^*$ with only S -wave
PRC 84 (2010)015202	4454	$ar{D}^*\Sigma_{ m c},ar{D}^*\Sigma_{ m c}^*$ with only S -wave
PRD88(2013)056012	4334.5	$J/\psi N, ar{D}^* ar{\Lambda}_{ m c}, ar{D}^* \Sigma_{ m c}, ar{D} \Sigma_{ m c}^*, ar{D}^* \Sigma_{ m c}^*$
		with only S-wave

(4月) (4日) (4日)