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Introduction
In high energy nuclear collisions, the Quark Gluon Plasma
is the fluid with the largest acceleration and vorticity ever
produced in laboratory. The hydrodynamic simulations and
recent experimental measurements indicate:

|a| ≈ 0.05 c2/fm ≈ 5 1030 m/s2

|ω| ≈ 0.06 c/fm ≈ 2 1022 s−1

We studied how acceleration and vorticity affects the
thermodynamics of the system and showed that the
stress-energy tensor gets non-dissipative quantum
corrections which are quadratic in vorticity and acceleration
[1, 2, 3, 4], which may not be negligible for the
hydrodynamic simulation of the Quark Gluon Plasma.

General global equilibrium

The most general equilibrium distribution in relativistic
quantum statistical mechanics is described by the covariant
statistical operator [5, 6]:

ρ̂ =
1

Z
exp

[
−
∫

Σ

dΣµ

(
T̂ µν(x)βν(x)− ζ(x) ĵµ(x)

)]
where β is the four-temperature vector and defines a
hydrodynamical frame [7] u = β/

√
β2, ζ = µ/T , µ the

chemical potential and Σ is an arbitrary spacelike 3D
hypersurface, provided that β is a Killing vector:

∇µβν +∇νβµ = 0, ∂µζ = 0.

The Minkowski spacetime solution ζ =constant and

βµ = bµ + $µν xν → $µν =
1

2
(∂µβν − ∂νβµ)

describe a system with constant thermal vorticity $ (hence
with acceleration and rotation) and simplify ρ̂ into [7]

ρ̂ =
1

Z
exp

[
−bµP̂ µ +

1

2
$µνĴ

µν + ζQ̂

]
where P̂ µ, Ĵµν are the Poincaré group generators.

Expansion for small vorticity $

〈
T̂µν(x)

〉
=

1

Z
tr

[
exp

(
−b · P̂ +

1

2
$ : Ĵ + ζQ̂

)
T̂µν(x)

]
The mean value of an operator in general equilibrium can
be calculated through an expansion in $ if the thermal
correlation length is much smaller than the length over
which the fields β and ζ significantly vary (hydrodynamic
limit), that is ∂β/β � 1/β, 1/m and $ � 1〈

T̂µν(x)
〉

=(ρ + p)uµuν − p gµν +
$ρσ

2|β|
〈
Ĵρσ T̂µν(0)

〉
β(x)

+
$ρσ$λκ

8|β|2
〈
Ĵρσ Ĵλκ T̂µν(0)

〉
β(x)

+O($2)

where
〈
. . .
〉
β(x)

is the mean value with familiar

homogeneous thermodynamic equilibrium at constant
four-temperature equal to β(x) in the point x, that is with

the density operator: ρ̂ = 1
Z exp

[
−βµP̂ µ + ζQ̂

]
.

Acceleration and rotation components

We can decompose $ into two spacelike vectors
proportional to acceleration and rotation by projecting onto
the four-velocity u

$µν = αµ uν − αν uµ + εµνρσwρ uσ

I uµ = βµ/
√
β2 uµ four-velocity

Iαµ = $µνuν = aµ/T aµ acceleration

Iwµ = ερσνµuν$ρσ = wµ/T wµ angular velocity

I γµ = εµνρσwν αρ uσ γµ transverse vector

We can then adopt the non-normalized tetrad {u, α, w, γ}.
Restoring the natural units:

|α| = } |~a|
c kB T

, |w| = } |~ω|
kB T

T=300 MeV−−−−−−−−−−→
|~a|'c|~ω|≈0.05 c2/fm

|$| ≈ 10−2

Non-dissipative second-order hydrodynamic coefficients

The final expression of the stress-energy tensor up to second order in $ [8]:

Tµν(x) ' (ρ− α2Uα − w2Uw)uµuν − (p− α2Dα − w2Dw)∆µν + Aαµαν + W wµwν + G (uµγν + uνγµ)

The coefficients can be calculated systematically in the rest frame as connected correlators between appropriate
stress-energy tensor components and generators of the Poincaré group:

Uα =
1

2

〈
K̂3 K̂3 T̂00(0)

〉
T

Uw =
1

2

〈
Ĵ3 Ĵ3 T̂00(0)

〉
T

A =
〈
K̂1 K̂2 T̂12(0)

〉
T

Dα =
1

6

3∑
i=1

〈
K̂3 K̂3 T̂ii(0)

〉
T
− 1

3

〈
K̂1 K̂2 T̂12(0)

〉
T

W =
〈
Ĵ1 Ĵ2 T̂12(0)

〉
T

Dw =
1

6

3∑
i=1

〈
Ĵ3 Ĵ3 T̂ii(0)

〉
T
− 1

3

〈
Ĵ1 Ĵ2 T̂12(0)

〉
T

G = −1

2

〈
{K̂1 , Ĵ2 } T̂03(0)

〉
T
.

All corrections to T µν are of quantum origin, as all the coefficients U,D,A,W,G turn out to have a finite classical
limit for the free gas, while α ad ω have an ~ factor (see previous frame).

Results for free fields
The stress-energy tensor and current operators for free scalar field are

T̂µν = ∂µϕ̂
∗∂νϕ̂ + ∂νϕ̂

∗∂µϕ̂− gµν(∂ϕ̂∗ · ∂ϕ̂−m2ϕ̂∗ϕ̂)− 2ξ(�− ∂µ∂ν)ϕ̂∗ϕ̂ ĵµ = i(ϕ̂∗∂µϕ̂− ϕ̂∂µϕ̂∗),
instead for free Dirac field are

T̂µν =
i

4

[̂̄ψ γµ ∂νψ̂ − ∂ν ̂̄ψ γµ ψ̂ + ̂̄ψ γν ∂µψ̂ − ∂µ̂̄ψ γν ψ̂] ĵµ = ̂̄ψ γµψ̂.
From the previous operators we obtain the analytic expression for the coefficients, whose behavior in temperature
is plotted in the figure in the case of massive fields with zero chemical potential [8, 9].
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Figure: The coefficients divided by the enthalpy h = ρ + p in the non degenerate phase for µ = 0

The coefficients in the massless case correspond to the asymptotic values at high temperature in figure.
For the Dirac field is immediate to evaluate the relative corrections in the degenerate case for T = 0 [9]:

Correction Ultra relativistic limit Non relativistic limit (µNR = µ−m)

α2Uα
ρ −1

2

(
|a|
µ

)2
1
64

(
|a|
µNR

)2
m
µNR

w2Uw
ρ −3

2

(
|ω|
µ

)2

− 3
32

(
|ω|
µNR

)2

α2Dα

p −1
2

(
|a|
µ

)2

− 5
64

(
|a|
µNR

)2
m
µNR

w2Dw

p −3
2

(
|ω|
µ

)2

−15
32

(
|ω|
µNR

)2

Consequences and conclusions

IThe stress-energy tensor has non-dissipative corrections if the fluid is rotating or accelerating. Such corrections
may be phenomenologically relevant for system with very high acceleration, such as in the early stage of
relativistic heavy ion collisions.

IThese corrections are pure quantum effects (they vanish in classical limit).

IThese corrections depend on the explicit form of the quantum stress-energy tensor operator (dependence on ξ
for the free scalar field). Thus, different tensors are thermodynamically inequivalent [10].

IWe have an easy prescription on how we evaluate them, as they are expressed as correlators of conserved
quantities (Tµν and Poincaré groups generators).
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