

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN-LNS

Anisotropie v_n nello spazio degli impulsi e fluttuazioni di stato inziale nel plasma creato nelle collisioni ad energie ultra-relativistiche

S. Plumari, L. Oliva, A. Puglisi,

M. Ruggieri, F. Scardina, V. Greco

Outline

- Transport approach at fixed η/s
- Initial state fluctuations
 - role of η/s on the build-up of v_n(pT): from RHIC to LHC
 - Correlations between $\boldsymbol{\epsilon}_n$ (space eccentricities) and
 - v_n (collective flows)
- Conclusions

sketch of evolution of a HIC

Initial out-of-equilibrium state: Glasma, namely, a configuration of longitudinal color–electric and color-magnetic flux tubes.

$\eta/s(T)$ around to a phase transition

Quantum mechanism

$$\Delta E \cdot \Delta t \ge 1 \quad \Rightarrow \quad \eta/s \approx \frac{1}{15} \langle p \rangle \cdot \tau > \frac{1}{15}$$

- AdS/CFT suggest a lower bound $\eta/s = 1/(4 \pi) \sim 0.08$
- From pQCD: $\eta/s \sim \frac{1}{g^4 \ln(1/g)} \Rightarrow \eta/s \sim 1$

P.Arnold et al., JHEP 0305 (2003) 051.

S. Plumari et al., J. Phys.: Conf. Ser. 420 012029 (2013). arXiv:1209.0601.

P. Kovtun et al., Phys.Rev.Lett. 94 (2005) 111601.
L. P. Csernai et al., Phys.Rev.Lett. 97 (2006) 152303.
R. A. Lacey et al., Phys.Rev.Lett. 98 (2007) 092301.

- LQCD some results for quenched approx. large error bars
- Quasi-Particle models seem to suggest a $\eta/s \sim T^{\alpha} \alpha \sim 1 1.5$.
- Chiral perturbation theory \rightarrow Meson Gas
- Intermediate Energies IE (μ_B>T)

Information from non-equilibrium: elliptic flow

INITIAL OLD VIEW

 $\lambda = (\sigma p)^{-1}$ or η/s viscosity

The v₂/ ϵ measures efficiency in converting the eccentricity from $v_2 = \langle \cos 2\varphi \rangle = \left\langle \frac{p_x^2 - p_y^2}{p_y^2 + p_y^2} \right\rangle$ **Coordinate to Momentum space**

Can be seen also as Fourier expansion

$$E\frac{d^{3}N}{dp^{3}} = \frac{d^{2}N}{2\pi p_{T}dp_{T}d\eta} \left[1 + 2v_{2}\cos(2\varphi) + 2v_{4}\cos(4\varphi) + ...\right]$$

by symmetry v_n with n odd expected to be zero ... (but event by event fluctuations)

Information from non-equilibrium: $v_n(p_T)$

 $\lambda = (\sigma p)^{-1}$ or η /s viscosity

 $\frac{\langle r_{\perp}^{n}\cos[n(\varphi-\Phi_{n})]\rangle}{\langle r_{\perp}^{n}\rangle}$

The v_2/ϵ measures efficiency in converting the eccentricity from **Coordinate to Momentum space**

$$\langle \mathbf{v}_n \rangle = \langle \cos[n(\varphi - \Psi_n)] \rangle$$

n=2 **n=3**

n=4

n=6

Can be seen also as Fourier expansion

$$E\frac{d^{3}N}{dp^{3}} = \frac{d^{2}N}{2\pi p_{T}dp_{T}d\eta} \Big[1 + 2v_{2}\cos 2(\varphi - \Psi_{2}) + 2v_{3}\cos 3(\varphi - \Psi_{3}) + \dots \Big]$$

by symmetry v_n with n odd expected to be zero ... (but event by event fluctuations)

Information from non-equilibrium: $v_n(p_T)$

 $\epsilon_{n} = \frac{\langle r_{\perp}^{n} \cos[n(\varphi - \Phi_{n})] \rangle}{\langle r_{\perp}^{n} \rangle}$

 $\lambda = (\sigma p)^{-1}$ or η /s viscosity

c²_s=dP/dε, EoS-lQCD

The v_2/ϵ measures efficiency in converting the eccentricity from **Coordinate to Momentum space**

 $\langle \mathbf{v}_n \rangle = \langle \cos[n(\varphi - \Psi_n)] \rangle$

C. Shen, Z. Qiu, U. Heinz arXiv:1502.04636

n=2 **n=3**

n=4

Can be seen also as Fourier expansion

..... 0.03 হি 0.02

$$E \frac{d^3 N}{dp^3} = \frac{d^2 N}{2\pi p_T dp_T d\eta} [1 + 2v_2 \cos 2(\varphi - \Psi_2) + 2v_3 \cos 3(\varphi - \Psi_3) + \dots]$$

by symmetry v_n with n odd expected to be zero ... (but event by event fluctuations)

Motivation for a kinetic approach:

$$\{p^{\mu}\partial_{\mu} + [p_{\nu}F^{\mu\nu} + M\partial^{\mu}M]\partial_{\mu}^{p}\}f(x,p) = S_{0} + C_{22} + \dots$$
Free Source term: Source term: Collisions particle creation $\rightarrow \varepsilon \neq 3P$

F

- Starting from 1-body distribution function and not from T^µ: - possible to include f(x,p) out of equilibrium.
 - M. Ruggieri, F. Scardina, S. Plumari, V. Greco PLB 727 (2013) 177. M. Ruggieri, A. Puglisi, L. Oliva, S. Plumari, F. Scardina, V. Greco PRC 92 (2015) 064904.

particle creation

n≠0

- extract information about the viscous correction δf to f(x,p)
- S.Plumari, G.L. Guardo, V. Greco, J.Y. Ollitrault NPA (2015) 87
- It is not a gradient expansion in n/s.

- Valid at intermediate p_{τ} out of equilibrium.
- Valid at high η/s (cross over region): + self consistent kinetic freeze-out

Applying kinetic theory to A+A Collisions....

$$\{p^{\mu}\partial_{\mu} + M\partial^{\mu} M\partial^{p}_{\mu}\}f(x,p) = C_{22} + \dots$$

- Impact of $\eta/s(T)$ on the build-up of $v_n(p_T)$ vs. beam energy
- role of EoS on the $v_n(p_T)$
- including the Initial state fluctuations

Initial State Fluctuations: Monte Carlo Glauber

PRC83, 034901 (2011).

Initial State Fluctuations: role of the EoS on $\langle v_n \rangle$ and $v_n(p_T)$

Initial State Fluctuations: $v_n(p_T)$ for central collisions

- At low p_T v_n(p_T)∝ p_Tⁿ. v₂ for higher p_T saturates while v_n for n>3 increase linearly with p_T.
- For central collisions viscous effect are more relevant. For n>2 the $v_n(p_T)$ are more sensitive to the η /s ratio in the QGP phase.

Initial State Fluctuations: v_n vs ε_n

S. Plumari, G. L. Guardo, F. Scardina, V. Greco Phys.Rev. C92 (2015) no.5, 054902.

At LHC v_n are more correlated to ε_n than at RHIC.
 v₂ and v₃ linearly correlated to the corresponding eccentricities ε₂ and ε₃ rispectively.

• C(4,4) < C(2,2) for all centralities. v_4 and ε_4 weak correlated similar to hydro calculations:

F.G. Gardim, F. Grassi, M. Luzum and J.Y. Ollitrault NPA904 (2013) 503. H. Niemi, G.S. Denicol, H. Holopainen and P. Huovinen PRC87(2013) 054901.

• For central collisions v_n are strongly correlated to ε_n : $v_n \propto \varepsilon_n$ for n=2,3,4.

Initial State Fluctuations: v_n vs ε_n

S. Plumari, G. L. Guardo, F. Scardina, V. Greco Phys.Rev. C92 (2015) no.5, 054902.

- Equation of State and collision energy play a role on the build up of <v_n> in central collisions. The effect of the EoS is to reduce the final <v_n>.
- At RHIC energies the <v_n> are smaller than those LHC and for more realistic η/s(T) v₂ > v₃ > v₄ ...
- At LHC energies and ultra-central collisions the <v_n> keep more information about the initial eccentricities <ε_n>.

From fields (Glasma) to particles (QGP)

$$\left[p^{\mu}\partial_{\mu}+p_{\nu}F^{\mu\nu}\partial_{\mu}^{p}\right]f(x,p)=\frac{dN}{d\Gamma}+C_{22}+\ldots$$

We solve self-consistently Boltzmann-Vlasov and Maxwell eq. (abelian approx.)

SCHWINGER MECHANISM

Classical fields decay to particles pairs via tunneling due to vacuum instability.

Longitudinal Chromo-Electric fields decay in gluon pairs and quark-antiquark pairs.

<u>For 4πη/s=1:</u>

- Fast thermalization in about 1 fm/c
- Pressure isotropization in about 1 fm/c

Focus on a

single flux tube

Conclusions

Transport at fixed \eta/s:

- Enhancement of η/s(T) in the cross-over region affect differently the expanding QGP from RHIC to LHC. LHC nearly all the v_n from the QGP phase.
- At LHC stronger correlation between v_n and ε_n than at RHIC for all n. <u>Ultra central collisions:</u>
 - v_n∝ ε_n for n=2,3,4 strong correlation C(n,n)≈1
 - $v_n(p_T)$ much more sensitive to $\eta/s(T)$
 - degree of correlation increase with the collision energy and the relative strenght of $\langle v_n \rangle$ depend on the colliding energies.
 - correlations in (v_n, v_m) reflect the initial correlations in $(\varepsilon_n, \varepsilon_m)$
- Relativistic transport theory permit to study early dynamics of HIC
 - Initial color-electric field decays in about 1 fm/c
 - Thermalization and Isotropization in about 1 fm/c

From fields (Glasma) to particles (QGP): (1+1D evolution)

$$\left[\left[p^{\mu}\partial_{\mu}+p_{\nu}F^{\mu\nu}\partial_{\mu}^{p}\right]f(x,p)=\frac{dN}{d\Gamma}+C_{22}+\ldots\right]$$

We solve self-consistently Boltzmann-Vlasov and Maxwell eq. (abelian approx.)

SCHWINGER MECHANISM

Classical fields decay to particles pairs via tunneling due to vacuum instability

$$\frac{dN_{jc}}{d\Gamma} \equiv p_0 \frac{dN_{jc}}{d^4 x d^2 p_T dp_z} = \mathcal{R}_{jc}(p_T) \delta(p_z) p_0$$
$$\mathcal{R}_{jc}(p_T) = \frac{\mathcal{E}_{jc}}{4\pi^3} \left| \ln \left(1 \pm e^{-\pi p_T^2/\mathcal{E}_{jc}} \right) \right|$$
$$\mathcal{E}_{jc} = (g|Q_{jc}E| - \sigma_j) \theta (g|Q_{jc}E| - \sigma_j)$$

LONGITUDINAL CHROMO-ELECTRIC FIELDS DECAY IN GLUON PAIRS AND QUARK-ANTIQUARK PAIRS

Casher, Neuberger and Nussinov, PRD 20, 179 (1979) Glendenning and Matsui, PRD 28, 2890 (1983)

ABELIAN FLUX TUBE MODEL

- negligible chromo-magnetic field
- abelian dynamics for the chromoelectric field
- Iongitudinal initial field
- Schwinger mechanism

From Glasma to Quark Gluon Plasma: (1+1D evolution)

1+1 D expansion

<u>For 4πη/s=1:</u>

- Field decays quickly with a power law
- Fast thermalization in about 1 fm/c
- Pressure isotropization in about 1 fm/c

For large n/s:

- Field decays faster in about 0.5 fm/c and for t > 0.5 fm/c plasma oscillations
- Particle spectra different from a thermal one
- Less efficient isotropization

M. Ruggieri, et al., PRC 92 (2015) 064904.

From Glasma to Quark Gluon Plasma: (3+1D evolution)

Electromagnetic probes are an efficient tool to investigate the initial state of heavy ion collisions and the properties of quark-gluon plasma.

 Schwinger simulations take into account of pre-equilibrium effects: Total photon number enhanced of 30% mainly at high pT

Theoretical models can be used to identify these sources and their relative importance in the spectrum

prompt photon (and nonequilibrium photon) QGP

Hadron Gas

Boltzmann Transport Equation

$$\{p^{\mu}\partial_{\mu}+[p_{\nu}F^{\mu\nu}+M\partial^{\mu}M]\partial_{\mu}^{p}\}f(x,p)=S_{0}+C_{22}+\ldots$$

To solve numerically the Boltzmann-Vlasov eq. we use the test particle method

$$C_{22} = \frac{1}{2E_1} \int \frac{d^3p_2}{(2\pi)^3 2E_2} \frac{1}{\nu} \int \frac{d^3p'_1}{(2\pi)^3 2E'_1} \frac{d^3p'_2}{(2\pi)^3 2E'_1} f'_1 f'_2 |\mathbf{M}_{1'2' \rightarrow 12}|^2 (2\pi)^4 \delta^{(4)} (p'_1 + p'_2 - p_1 - p_2)$$

For the numerical implementation of the collision integral we use the stochastic algorithm. (Z. Xu and C. Greiner, PRC 71 064901 (2005))

$$\eta(\vec{x},t)/s = \frac{1}{15} \langle p \rangle \tau_{\eta} \longrightarrow \sigma_{tot}^{\eta/s} = \frac{1}{15} \frac{\langle p \rangle}{g(m_D/2T)n} \frac{1}{\eta/s}$$

 σ is evaluated in such way to keep fixed the η /s during the dynamics according the Chapman-Enskog equation. (similar to D. Molnar, arXiv:0806.0026[nucl-th])

- We know how to fix locally $\eta/s(T)$
- We have checked the Chapmann-Enskog (CE):
 - CE good already at 1^{st} order $\approx 5\%$
 - Relaxation Time Approx. severely understimates η
 S. Plumari et al., PRC86 (2012) 054902.

Initial State Fluctuations: $v_n(p_T)$ and η/s

- $v_n(p_T)$ at RHIC is more sensitive to the value of the η /s at low temperature. $v_a(p_T)$ and $v_3(p_T)$ are more sensitive to the value of η /s than the $v_2(p_T)$.
- At LHC energies v_n(p_τ) is more sensitive to the value of η/s in the QGP phase (compare solid and dot-dashed lines).

Initial State Fluctuations: $v_n(p_T)$ and η/s

- $v_n(p_T)$ at RHIC is more sensitive to the value of the η /s at low temperature. $v_a(p_T)$ and $v_3(p_T)$ are more sensitive to the value of η /s than the $v_2(p_T)$.
- At LHC energies v_n(p_τ) is more sensitive to the value of η/s in the QGP phase (compare solid and dot-dashed lines).