Investigation of the low-energy K⁻ interactions in nuclear matter with AMADEUS

Raffaele Del Grande*

Università degli Studi di Roma TOR VERGATA INFN, Laboratori Nazionali di Frascati

On behalf of the AMADEUS collaboration

*raffaele.delgrande@lnf.infn.it

Terzo Incontro Nazionale di Fisica Nucleare INFN2016 Frascati, 15 Novembre 2016

AMADEUS: the scientific goal

Low-energy K⁻ interaction studies with **light nuclei** (H, ⁴He, ⁹Be, ¹²C) in order to extract conclusive constrains on:

• $\overline{\mathbf{K}}\mathbf{N}$ **Potential** \rightarrow how deep can an antikaon be bound in a nucleus?

- $U_{\overline{KN}}$ strongly affects the position of the $\Lambda(1405)$ state \rightarrow we investigate it through $(\Sigma - \pi)^0$ decay --- Y π CORRELATION
- if $U_{\overline{KN}}$ is strongly attractive then possible K⁻ multi-N bound states \rightarrow we investigate through (Λ/Σ –N) decay ---Y N CORRELATION

• Y-N potential \rightarrow extremely poor experimental information from scattering data

- U_{YN} determines the strength of the final state YN (elastic & inelastic) scattering in nuclear environment
 - \rightarrow could be tested with Y N CORRELATION

$\Lambda(1405)$... resonance or/and bound state?

Chiral unitary models.
 Two poles in the neighborhood of the Λ(1405):

Akaishi-Esmaili-Yamazaki phenomenological potentials

Fig. 6. Detailed differences in $M_{\Sigma\pi}$ spectra among the Hyodo–Weise prediction and the present model predictions.

Investigation of the low-energy K⁻ interactions in nuclear matter with AMADEUS

Raffaele Del Grande

[Phys. Lett. B 686 (2010) 23-28]

2/17

$\Lambda(1405)$... resonance or/and bound state?

• Akaishi-Esmaili-Yamazaki phenomenological potential Fit from $K^2 + {}^4\text{He} \rightarrow \Sigma \pi {}^3\text{He}$ Bubble Chamber experiments

→ Single pole ansatz?

 $E_{\Sigma\pi} = m_{K} + m_{N} - BE - p^{2}/(2\mu) \longrightarrow E_{max} \sim 1412 \text{ MeV}$

CUT AT THE <u>ENERGY LIMIT AT-REST</u>? <u>NON RESONANT SHAPE</u>?

> **Resonant VS Non-Resonant** $K^{-} N \rightarrow (Y^{*} ?) \rightarrow Y \pi$ $K^{-} N \rightarrow Y \pi$

in medium, how much comes from resonance ?

Fig. 6. Detailed differences in $M_{\Sigma\pi}$ spectra among the Hyodo–Weise prediction and the present model predictions.

[Phys. Lett. B 686 (2010) 23-28]

AMADEUS: the scientific goal

Low-energy K⁻ interaction studies with **light nuclei** (H, ⁴He, ⁹Be, ¹²C) in order to extract conclusive constrains on:

• $\overline{\mathbf{K}}\mathbf{N}$ **Potential** \rightarrow how deep can an antikaon be bound in a nucleus?

- $U_{\overline{KN}}$ strongly affects the position of the $\Lambda(1405)$ state
 - \rightarrow we investigate it through $(\Sigma \pi)^0$ decay --- Y π CORRELATION

- if $U_{\overline{KN}}$ is strongly attractive then possible K⁻ multi-N bound states \rightarrow we investigate through (Λ/Σ -N) decay ---Y N CORRELATION

• Y-N potential \rightarrow extremely poor experimental information from scattering data

- U_{YN} determines the strength of the final state YN (elastic & inelastic) scattering in nuclear environment
 - \rightarrow could be tested with Y N CORRELATION

How deep can an antikaon be bound in a nucleus?

Possible Bound States:

 $(K^{-}pp) \rightarrow \Lambda p \text{ or } \Sigma^{0} p \qquad (K^{-}ppn) \rightarrow \Lambda d \text{ or } \Sigma^{0} d$

predicted due to the strong KN interaction in the I=0 channel. [Wycech (1986) - Akaishi & Yamazaki (2002)]

Multinucleon absorption processes:

2NA: 3NA: $K^{-} + "pp'' \rightarrow \Lambda p \text{ or } \Sigma^{0}p \qquad K^{-} + "ppn'' \rightarrow \Lambda d \text{ or } \Sigma^{0}d$

K ⁻ pp bound state						
	FF					
Experiments rep	porting DBKNS					
KEK-PS E549	T. Suzuki at al. MPLA23, 2520-2523 (2008)					
FINUDA	M. Agnello et al. PRL94, 212303 (2005)	Extraction of a signal				
DISTO	T. Yamazaki et al. PRL104 (2010)	Extraction of a signal				
OBELIX	G. Bendiscioli et al. NPA789, 222 (2007)	Extraction of a signal				
HADES	G. Agakishiev et al. PLB742, 242-248 (2015)	Upper limit				
LEPS/SPring-8	A.O. Tokiyasu et al. PLB728, 616-621 (2014)	Upper limit				
J-PARC E15	T. Hashimoto et al. PTEP, 061D01 (2015)	Upper limit				
	V labiliana et al. DTED 021D01 (2015)	Extraction of a signal				

AMADEUS: the scientific goal

Low-energy K⁻ interaction studies with **light nuclei** (H, ⁴He, ⁹Be, ¹²C) in order to extract conclusive constrains on:

• $\overline{\mathbf{K}}\mathbf{N}$ **Potential** \rightarrow how deep can an antikaon be bound in a nucleus?

- $U_{\overline{KN}}$ strongly affects the position of the $\Lambda(1405)$ state
 - \rightarrow we investigate it through $(\Sigma \pi)^0$ decay --- Y π CORRELATION

- if $U_{\overline{KN}}$ is strongly attractive then possible K⁻ multi-N bound states \rightarrow we investigate through (Λ/Σ -N) decay ---Y N CORRELATION

● Y-N potential → extremely poor experimental information from scattering data

- U_{yN} determines the strength of the final state YN (elastic & inelastic) scattering in nuclear environment
 - \rightarrow could be tested with Y N CORRELATION

Essential impact on the case of NEUTRON STARS

A M A D E U S proposal:

Y N CORRELATION STUDIES

Isolate hyperon scattering processes with:

- single nucleon $Y N \rightarrow Y' N'$

- two nucleons $Y N_1 N_2 \rightarrow Y' N_1' N_2'$

AMADEUS & DAΦNE

DA Φ NE • double ring e⁺e⁻ collider working at C.M. energy of ϕ , producing \approx 1000 ϕ /s $\phi \rightarrow K^+K^-$ (BR = (49.2 ± 0.6)%) • low momentum Kaons \approx 127 Mev/c

• back to back K⁺K⁻ topology

AMADEUS step 0 \rightarrow KLOE 2004-2005 dataset analysis ($\mathscr{L} = 1.74 \text{ pb}^{-1}$)

KLOE

• Cilindrical drift chamber with a 4π geometry and electromagnetic calorimeter

96% acceptance

- optimized in the energy range of all **charged particles** involved
- good performance in detecting photons and neutrons checked by kloNe group [M. Anelli et al., Nucl Inst. Meth. A 581, 368 (2007)]

K⁻ absorption on light nuclei

Σ^0 p correlation studies in ¹²C

 $\mathbf{K}^{-} + {}^{12}\mathbf{C} \rightarrow \boldsymbol{\Sigma}^{0} + \mathbf{p} + \mathbf{R}$

First measure of the **2NA-QF** yield

	yield / $K_{stop}^- \cdot 10^{-2}$	$\sigma_{stat} \cdot 10^{-2}$	$\sigma_{syst} \cdot 10^{-2}$
2NA-QF	0.127	± 0.019	+0.004 -0.008
2NA-FSI	0.272	± 0.028	+0.022 -0.023
Tot 2NA	0.376	± 0.033	+0.023 -0.032
3NA	0.274	± 0.069	+0.044 -0.021
Tot 3 body	0.546	± 0.074	+0.048 -0.033
4NA + bkg.	0.773	± 0.053	+0.025 -0.076

Published in PLB: O. Vazquez Doce et al., Phys.Lett. B 758, 134-139 (2016)

Investigation of the low-energy K⁻ interactions in nuclear matter with AMADEUS

Raffaele Del Grande

Σ^0 p correlation studies in ¹²C

The **ppK⁻ bound state** signal was included:

- > The best fit gives **BE=45 MeV** and Γ = 30 **MeV**
- > p-value=0.25 \rightarrow Statistical significance of 1σ

Upper limit: $ppK^{-}/K_{stop}^{-} = (0.044 \pm 0.009 stat_{-0.005}^{+0.004} syst) \cdot 10^{-2}$

K⁻ 4NA cross section and yield measurement K⁻ + ⁴He $\rightarrow \Lambda$ + t

$\Lambda(1405)$... resonance or/and bound state?

• Akaishi-Esmaili-Yamazaki phenomenological potential Fit from $K^2 + {}^4\text{He} \rightarrow \Sigma \pi {}^3\text{He}$ Bubble Chamber experiments

→ Single pole ansatz?

 $E_{\Sigma\pi} = m_{K} + m_{N} - BE - p^{2}/(2\mu) \longrightarrow E_{max} \sim 1412 \text{ MeV}$

CUT AT THE <u>ENERGY LIMIT AT-REST</u>? <u>NON RESONANT SHAPE</u>?

> **Resonant VS Non-Resonant** $K^{-} N \rightarrow (Y^{*} ?) \rightarrow Y \pi$ $K^{-} N \rightarrow Y \pi$

in medium, how much comes from resonance ?

Fig. 6. Detailed differences in $M_{\Sigma\pi}$ spectra among the Hyodo–Weise prediction and the present model predictions.

[Phys. Lett. B 686 (2010) 23-28]

On the K^{- 4}He $\rightarrow \Lambda \pi^{-3}$ He resonant and non-resonant processes (K. Piscicchia, S. Wycech, C. Curceanu, Nucl. Phys. A954 (2016) 75-93)

Total $\Lambda\pi^{-}$ momentum spectra for the resonant (Σ^{*-}) and non-resonant (I = 1) processes were calculated, for both S-state and P-state K⁻ capture at-rest and in-flight. Corrections to the amplitudes due to Λ/π final state interactions were estimated.

The determination of the K⁻ N \rightarrow Y π nonresonant transition amplitude below threshold (about 33 MeV in ⁴He) is essential to pin-down the $\Lambda(1405)$ resonant shape in absorption experiments.

These will be used by the AMADEUS collaboration to fit the Y π measured spectra and extract, for the first time, the non-resonant transition amplitude (|f^{N-R}_{A π}(I=1)| and |f^{N-R}_{E π}(I=0)|) fundamental to determine the A(1405) properties.

Investigation of the low-energy K⁻ interactions in nuclear matter with AMADEUS

Raffaele Del Grande

14/17

Non resonant transition amplitude: $K^{-} + n \rightarrow \Lambda + \pi^{-}$

The resonant transition amplitude for the Σ^* (1385) in I = 1 channel is well known

Resonant: $K^- + n \rightarrow \Sigma^{*-} \rightarrow \Lambda + \pi^-$

Non-Resonant: $K^- + n \rightarrow \Lambda + \pi^-$

+ Data
Global fit
Resonant Σ* (at-rest)
Resonant Σ* (in-flight)
Non-Resonant (at-rest)
Non-Resonant (in-flight)
Σ/Λ nuclear conversion
Absorptions in ¹²C (from Carbon wall data)

	percentage $\cdot 10^{-2}$	$\sigma_{stat} \cdot 10^{-2}$	$\sigma_{syst} \cdot 10^{-2}$
NR-ar	12.00	± 1.66	+1.96 - 2.77
RES-ar/NR-ar	0.39	± 0.04	+0.18 - 0.07
NR-if	19.24	$\pm 4,38$	+5.90 - 3.33
RES-if//NR-if	0.23	± 0.03	+0.23 - 0.22
$\Sigma \to \Lambda \text{ conv.}$	2.16	± 0.30	+1.62 - 0.83
$K^{-12}C$ capture	57.00	± 1.23	+2.21 -3.19

the non resonant transition amplitude 33 MeV under K⁻N threshold is

 $|f_{ar}^{s}| = (0.334 \pm 0.018 \, stat_{-0.58}^{+0.34} \, syst) \, fm.$

15/17

Conclusions

AMADEUS step 0 → KLOE 2004-2005 dataset analysis

- ✤ K⁻ single and multi-nucleon absorption processes
- Possible formation of Deeply Bound Kaonic Nuclear States (DBKNS)
- Nature of the controversial $\Lambda(1405)$ state
- * Scattering processes between hyperons and nucleons (YN \rightarrow Y'N')

<u>ONGOING ANALYSIS</u>: Λp , Λd , $\Sigma^0 d$, $\Sigma^0 \pi^0$, $\Sigma^+ \pi^-$, $\Sigma^- \pi^+$ <u>COMPLETED ANALYSIS</u>:

"There's two possible outcomes: if the result confirms the hypothesis, then you've made a measurement. If the result is contrary to the hypothesis, then you've made a discovery. "

Enrico Fermi (1901 – 1954)

Investigation of the low-energy K⁻ interactions in nuclear matter with AMADEUS

Raffaele Del Grande