

Terzo Incontro Nazionale di Fisica Nucleare INFN2016

The NUMEN Project: ¹¹⁶Sn(¹⁸O,¹⁸Ne)¹¹⁶Cd and ¹¹⁶Cd(²⁰Ne,²⁰O)¹¹⁶Sn DCEX reactions preliminary results

Gianluca Santagati for the NUMEN collaboration

Over BB

[9] A.

The role of nuclear physics

In the $0v\beta\beta$ the decay rate can be expressed as a product of independent factors, that also depends on a function containing physics beyond the Standard Model throught the masses and the mixing coefficients of the neutrinos species :

$$1/T \bigcup_{j'_{2}}^{0\nu} (0^{+} \rightarrow 0^{+}) = G \left(M \bigcup_{j'_{2}}^{0\nu\beta\beta} \right)^{2} \left(\frac{m_{\nu}}{m_{e}} \right)^{2} \rightarrow \left(m_{\nu} \right) = \sum_{i} |U_{ei}|^{2} m_{i} e^{i\alpha_{i}} + \frac{m_{i}}{2} e^{i\alpha_{i}} + \frac{m_{i}}}{2} e^{i\alpha_{i}} + \frac{m_{i}}{2} e^{i\alpha_{i}} + \frac{m_{i}}}{2} e^{i\alpha_{i}} + \frac{m_{i}}{2} e^{i\alpha_{i}} + \frac{m_{i}}}{2} e^{i\alpha_{i}} + \frac{m_{i}}{2} e^{i\alpha_{i}} + \frac{m_{i}}{2} e^{i\alpha_{i}} + \frac{m_{i}}{2} e^{i$$

[11] J. Hyvärinen and J. Suhonen, Phys. Rev. C87, 024613 (2015).

[12] F. Šimkovic, V. Rodin, A. Faessler and P. Vogel, Phys. Rev. C87, 045501 (2013).

[13] N. López Vaquero, T. R. Rodríguez and J. L. Egido, Phys. Rev. Lett. 111, 142501(2013).

[14] J. Yao, L. Song, K. Hagino, P. Ring and J. Meng, Phys. Rev.C91, 024316 (2015).

[11] J. Hyvärinen and J. Suhonen, Phys. Rev. C87, 024613 (2015).

[12] F. Šimkovic, V. Rodin, A. Faessler and P. Vogel, Phys. Rev. C87, 045501 (2013).
 [13] N. López Vaquero, T. R. Rodríguez and J. L. Egido, Phys. Rev. Lett.111, 142501(2013).

[14] J. Yao, L. Song, K. Hagino, P. Ring and J. Meng, Phys. Rev.C91, 024316 (2015).

The role of nuclear physics

In the $0\nu\beta\beta$ the decay rate can be expressed as a product of independent factors, that also depends on a function containing physics beyond the Standard Model throught the masses and the mixing coefficients of the neutrinos species :

$$1/T_{\frac{1}{2}}^{0\nu}(0^{+} \rightarrow 0^{+}) = G_{0} \underbrace{M_{\frac{0}{2}}^{0\nu\beta\beta}}_{m_{e}}^{2} \underbrace{\left\langle \frac{m_{\nu}}{m_{e}} \right\rangle^{2}}_{m_{e}} \underbrace{\left\langle m_{\nu} \right\rangle = \sum_{i} |U_{ei}|^{2} m_{i}e^{i\alpha_{i}}}_{new physics inside !}$$

$$\left|M_{\varepsilon}^{0\nu\beta\beta}\right|^{2} = \left|\left\langle \Psi_{f} \left| \hat{O}_{\varepsilon}^{0\nu\beta\beta} \right| \Psi_{i} \right\rangle\right|^{2}$$

$$The differences are about a factor of two to three, or three to four units.$$

$$Thus, if the M^{0\nu\theta\beta}$$
 nuclear matrix elements were known with sufficient precision, the neutrino mass could be established from 0\nu\theta\beta} decay rate masurements.

Heavy-ion DCE

- ✓ Induced by strong interaction
- ✓ Sequential nucleon transfer mechanism 4th order:

Brink's Kinematical matching conditions D.M.Brink, et al., Phys. Lett. B 40 (1972) 37

- ✓ Meson exchange mechanism 2nd order
- Possibility to go in both directions

)LNS

Istituto Nazionale di Fisica Nucleare

INFN

MAGNEX spectrometer @ LNS

Factorization of the charge exchange cross-section

For single CEX:

$$\frac{d\sigma}{d\Omega}(q,\omega) = \hat{\sigma}_{\alpha}(E_{p},A)F_{\alpha}(q,\omega)B_{T}(\alpha)B_{P}(\alpha) \qquad \alpha = \text{Fermi (F) or Gamow-Teller (GT)}$$

$$\textbf{unit cross-section } \hat{\sigma}(E_{p},A) = K(E_{p},0)|J_{\alpha}|^{2}N_{\alpha}^{D}$$

$$B(\alpha) = \frac{1}{2J_{i}+1}|M(\alpha)|^{2}$$

$$C.J \text{ Guess, et al, PRC 83 064318 (2011)}$$

$$\beta \text{-decay transition strengths}$$

B(GT;CEX)/B(GT;\beta-decay) ~ 1 within a few % especially for the strongest transitions

eta-decay transition strengths (reduced matrix elements)

In the hypothesis of a surface localized process (for direct quasi elastic processes), in a simple model one can assume that the DCE process is just a second order charge exchange, where projectile and target exchange two uncorrelated isovector virtual mesons.

The NUMEN goals

1. <u>The aim of the NUMEN Project</u>: Towards the access of the NME involved in the half-life of the **0v66** decay by measuring the cross sections of HI induced DCE reactions with high accuracy.

$$1/T_{\frac{1}{2}}^{0\nu}\left(0^{+} \rightarrow 0^{+}\right) = G_{0}\left(M^{\beta\beta\,0\nu}\right)^{2} \frac{\left\langle m_{\nu}\right\rangle}{m_{e}}^{2}$$

2. A new generation of DCE constrained $0\nu\beta\beta$ NME theoretical calculations can emerge: the measured DCE cross sections provide a powerful tool for theory in order to give very stringent constraints in the NME estimation. The DCE processes can be artificially generated in the lab.

3. The ratio of measured cross sections can give a model independent way to compare the sensitivity of different half-life experiments.

Strong impact in future development of the field, looking for a "golden isotope" ...

The pilot experiment: ⁴⁰Ca(¹⁸O,¹⁸Ne)⁴⁰Ar @ LNS

Measured energy spectrum of ^{40}Ar at very forward angles with an energy resolution of FWHM $\sim 0.5~\text{MeV}$.

F. Cappuzzello, et al., Eur. Phys. J. A (2015) 51: 145

The position of the minima is well described by a Bessel function: such an oscillation pattern is not expected in complex multistep transfer reactions.

$$\sigma^{\text{DCE}} = 260 \text{ nb } 0^\circ < \theta < 2^\circ$$

NUMEN experimental runs

March 2016 ¹¹⁶Cd + ²⁰Ne @ 15-22 MeV/u (test) at $\vartheta_{opt} = -3^{\circ} (0^{\circ} < \theta_{lab} < 8^{\circ})$

- DCEX reaction ¹¹⁶Cd(²⁰Ne,²⁰O)¹¹⁶Sn
- CEX reaction ¹¹⁶Cd(²⁰Ne,²⁰F)¹¹⁶In
- 2p-transfer ¹¹⁶Cd(²⁰Ne,¹⁸O)¹¹⁸Sn
- 1p-transfer ¹¹⁶Cd(²⁰Ne,¹⁹F)¹¹⁷In

October 2015 - June 2016 ¹¹⁶Sn + ¹⁸O @ 15 MeV/u at $\vartheta_{opt} = 3^{\circ} (0^{\circ} < \theta_{lab} < 9^{\circ})$

- DCEX reaction ¹¹⁶Sn(¹⁸O,¹⁸Ne)¹¹⁶Cd
- CEX reaction ¹¹⁶Sn(¹⁸O,¹⁸F)¹¹⁶In
- 2p-transfer ¹¹⁶Sn(¹⁸O,²⁰Ne)¹¹⁴Cd
- 1p-transfer ¹¹⁶Sn(¹⁸O,¹⁹F)¹¹⁵In
- 2n-transfer ¹¹⁶Sn(¹⁸O,¹⁶O)¹¹⁸Sn

¹¹⁶Cd(²⁰Ne,²⁰O)¹¹⁶Sn DCEX reaction @ 15 MeV/A

After ray reconstruction

¹¹⁶Cd(²⁰Ne,²⁰O)¹¹⁶Sn DCEX reaction @ 15 MeV/A

DCE transitions to ¹¹⁶Sn_{gs} and first excited 2⁺ state at 1.29 MeV are clearly separated (energy resolution ~ 0.75 MeV) and characterized by a remarkable cross section of about 66 nb and 38 nb, respectively.

The role of the competing processes

Multi nucleon transfer suppressed respect to DCE

Energy spectrum (Ex = $Q_0 - Q$) of the ¹¹⁶Cd(²⁰Ne,¹⁸O)¹¹⁸Sn two-proton stripping reaction at 15 MeV/u 0° < ϑ_{lab} < 9°

Reconstructed energy spectrum of the ¹¹⁶Cd(²⁰Ne,²⁰O)¹¹⁶Sn DCE reaction at 15 MeV/u 0° < ϑ_{lab} < 9°

Perspectives

- 1. Theoretical upgrade **—** New Structure and Dynamic calculations

Magnex upgrade:

- FPD gas tracker **GEM** like tracker system
- Si detectors SiC detectors
- new Front-End electronics
- array of detectors for measuring the coincident γ-rays
- enhancement of the maximum magnetic rigidity

NUclear Matrix Elements for Neutrinoless double beta decay

C. Agodi, J. Bellone, R. Bijker, D. Bonanno, D. Bongiovanni, V. Branchina, M.P. Bussa, L. Busso, L. Calabretta, A. Calanna, D. Calvo, F. Cappuzzello, D. Carbone, M. Cavallaro, M. Colonna, G. D'Agostino, N. Deshmukh, S. Ferrero, A. Foti, P. Finocchiaro, G. Giraudo, V. Greco, F. Iazzi, R. Introzzi, G. Lanzalone, A. Lavagno, F. La Via, J.A. Lay, G. Litrico, D. Lo Presti, F. Longhitano, A. Muoio, L. Pandola, F. Pinna, S. Reito, D. Rifuggiato, M.V. Ruslan, G. Santagati, E. Santopinto, L. Scaltrito, S. Tudisco

INFN - Laboratori Nazionali del Sud, Catania, Italy, INFN - Sezione di Catania, Catania, Italy Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy, INFN - Sezione di Torino, Torino, Italy, Politecnico di Torino, Italy INFN - Sezione di Genova, Genova, Italy, CNR-IMM, Sezione di Catania, Italy, Università degli Studi di Enna "Kore", Enna, Italy

T. Borello-Lewin, P. N. de Faria, J.L. Ferreira, R. Linares, J. Lubian, N.H. Medina, J.R.B. Oliveira, M.R.D. Rodrigues, D.R. Mendes Junior, V. Zagatto

Instituto de Física, Universidade Federal Fluminense, Niterói, RJ, Brazil

Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil

X. Aslanoglou, A. Pakou, O. Sgouros, V. Soukeras, G. Souliotis,

Department of Physics and HINP, The University of Ioannina, Ioannina, Greece

Department of Chemistry and HINP, National and Kapodistrian University of Athens, Greece

E. Aciksoz, I. Boztosun, A. Hacisalihoglu, S.O. Solakcı,

Akdeniz University, Antalya, Turkey

L. Acosta, E.R. Chávez Lomelí,

Universidad Nacional Autónoma de México

S. Boudhaim, M.L. Bouhssa, Z. Housni, A. Khouaja, J. Inchaou

Université Hassan II – Casablanca, Morocco

N. Auerbach,

School of Physics and Astronomy Tel Aviv University, Israel

H. Lenske,

University of Giessen, Germany

Thank you !

Spokespersons: C. Agodi (agodi@lns.infn.it), F. Cappuzzello (cappuzzello@lns.infn.it) \

Back-up slides

$0\nu\beta\beta$ vs HI-DCE

- **1.** <u>Initial and final states</u>: Parent/daughter states of the *0v86* are the same as those of the target/residual nuclei in the DCE;
- 2. <u>Spin-Isospin mathematical structure</u> of the transition operator: Fermi, Gamow-Teller and rank-2 tensor together with higher L components are present in both cases;
- **3.** <u>Large momentum available</u>: A linear momentum as high as 100 MeV/c or so is characteristic of both processes;
- 4. <u>Non-locality</u>: both processes are characterized by two vertices localized in two valence nucleons. In the ground to ground state transitions in particular a pair of protons/neutrons is converted in a pair of neutrons/protons so the non-locality is affected by basic pairing correlation length;
- 5. <u>In-medium</u> processes: both processes happen in the same nuclear medium, thus **quenching** phenomena are expected to be similar;
- 6. Relevant <u>off-shell propagation</u> in the intermediate channel: both processes proceed via the same intermediate nuclei off-energy-shell even up to 100 MeV.

Planned experimental activity

NUclear REactions for neutrinoless double beta decay

Reactions	2017	2018	2019
²⁰ Ne + ¹¹⁶ Cd at 15 MeV/u	~ 60 BTU		
¹⁸ O + ⁴⁰ Ca at 25 MeV/u		~ 45 BTU	
¹⁸ O + ⁷⁶ Se at 15 MeV/u		~ 75 BTU	
²⁰ Ne + ⁷⁶ Ge at 15 MeV/u		~ 60 BTU	
²⁰ Ne + ¹¹⁶ Cd at 25 MeV/u			~ 60 BTU
²⁰ Ne + ⁷⁶ Ge at 25 MeV/u			~ 60 BTU

From the pilot experiment towards the "hot cases": The four phases of NUMEN project

Phase1: the experiment feasibility

⁴⁰Ca(¹⁸O,¹⁸Ne)⁴⁰Ar @ 270 MeV already done: the results demostrate the technique feasibility.

>Phase2: toward "few hot" cases optimizing experimental conditions and getting first result

Upgrading of CS and MAGNEX, preserving the access to the present facility. Tests will be crucial.

Phase3: the facility upgrade

Disassembling of the old set-up and re-assembling of the new ones will start: about 18-24 months

Phase4: the experimental campaign

High beam intensities (some pμA) and long experimental runs to reach integrated charge of hundreds of mC up to C, for the experiments in coincidences, for all the variety of isotopes for 0ν66 decay (⁴⁸Ca,⁸²Se,⁹⁶Zr,¹⁰⁰Mo,¹¹⁰Pd,¹²⁴Sn,¹²⁸Te,¹³⁶Xe,¹⁴⁸Nd,¹⁵⁰Nd,¹⁵⁴Sm,¹⁶⁰Gd,¹⁹⁸Pt).

		PRELIMINARY TIME TABLE						
year	2013	201	4 2015	2016	2017	2018	2019	2020
Phase1								
Phase2								
Phase3								
Phase4								

MAGNEX Focal Plane Detector

Gas-filled hybrid detector
 Drift chamber 1400mm x200mmx100mm

Pure isobutane pressure range: 5-100 mbar; 600-800 V, wires 20 micron

Schematic view of the MAGNEX Focal Plane Detector: a) side view; b) top view.

Wall Si 500 μm
 20 columns, 3 rows

HI Single CEX @ LNS

⁴⁰Ca(¹⁸O,¹⁸F)⁴⁰K @ 15 MeV/u

INFN

stituto Nazional di Fisica Nuclear

The pilot experiment: ⁴⁰Ca(¹⁸O,¹⁸Ne)⁴⁰Ar@LNS

Analogia con il decadimento **6**

Fermi-like Gamow Teller-like

- \rightarrow ampiezze di transizioni hanno struttura molto simile a quelle del decadimento β essendo tali transizioni permesse (L=0) distinte in:
- \succ Fermi, S=0 → ΔJ=0 e O_F =τ[±]
- \succ Gamow-Teller, S=1 → ΔJ=1 e O_{GT} = στ[±]
- Connessione tra decadimento β e reazioni di scambio di carica notata alla fine degli anni '50¹). Formalizzata³ per sistemi leggeri, sotto opportune condizioni (*q* ~0, L=0) vale la fattorizzazione:

$$\frac{d\sigma}{d\Omega}(q, E_x) = \hat{\sigma}_{\alpha}(E_p, A) F_{\alpha}(q, E_x) B_T(\alpha) B_p(\alpha)$$

Espressione che vale anche per ioni pesanti entro un 20-30% di precisione

¹⁾ Bloom et al, Phys. Rev. Lett. 3 (1959).

²⁾ C.D. Goodman et al, Phys. Rev. Lett. 44 (1980).

³⁾ T. Taddeucci et al, Phys. Rev. C 28 (1983).

The volume integrals

Nuclear spin and isospin excitations

Franz Osterfeld

Reviews of Modern Physics, Vol. 64, No. 2, April 1992

- Volume integrals are larger at smaller energies
- They enter to the fourth power in the unit cross section!
- ✓ **GT-F competion** at low energy

FIG. 15. Energy and momentum dependence of the free nucleon-nucleon t_F matrix. The upper part of the figure shows the energy dependence of the central components of the effective t_F matrix at zero-momentum transfer (including direct and exchange terms). The *G*-matrix interaction of Bertsch *et al.* (1977) was used below 100 MeV and joined smoothly to the t_F matrix above 100 MeV. The lower figures show the momentum dependence of the 135-MeV t_F matrix for natural-(left figure) and unnatural-(right figure) parity transitions. Isoscalar and isovector central (*C*), spin-orbit (*LS*), and tensor (*T*) components are shown. From Petrovich and Love (1981).

Factorization of the double charge exchange cross-section

Under the hypotesis of surface localization, one can assume that the DCE process is just a second order charge exchange: DCE cross sections can be factorized in a nuclear structure term, containing the matrix element, and a nuclear reaction factor.

A wide range of DCE cross sections has never been accurately measured due to :

- > The difficult to perform zero degrees measurements.
- The poor yields in the measured energy spectra and angular distributions, due to the very low cross sections.
- The difficulty to disentangle possible contributions of multi-nucleon transfer reactions leading to the same final state.

B(GT;CEX)/B(GT; β -decay) ~ 1 within a few % especially for the strongest transitions

More about NME

$$\left|M_{\varepsilon}^{\beta\beta0\nu}\right|^{2} = \left|\left\langle\Psi_{f}\right|\hat{O}_{\varepsilon}^{\beta\beta0\nu}\left|\Psi_{i}\right\rangle\right|^{2}$$

Warning: Normally the coupling constants g_A and g_V are kept out form the matrix element and we talk of reduced matrix elements

$$\left|M_{\alpha}^{\beta\beta0\nu}\right|^{2} = \left|M_{\alpha}\right|^{2} = B_{\alpha}$$

32

The 3 operators are both present in weak and strong interaction

Radial dependence

 $\Delta r \Delta p \sim h/2\pi$

 $\Delta r \sim 2 fm$ \longrightarrow $\Delta p \sim 0.5 fm^{-1} \sim 100 MeV/c$

All the L are possible and as a consequence the operator behaves as the Coulomb potential

 $f(r) \propto 1/r$ neutrino potential

Similarly for the DCE!

The unit cross section

In the $\sigma(E_p, A)$ the specificity of the single or double charge exchange is express through the volume integrals of the potentials: the other factors are general features of the scattering.

Single charge-exchange

 J_{ST} Volume integral of the V_{ST} potential

Double charge-exchange

 J_{ST} Volume integral of the $V_{ST}GV_{ST}$ potential, where G is the intermediate channel propagator:

$$G = \sum_{n} \frac{|n\rangle\langle n|}{E_n - (E_i + E_f)/2}$$

where $E_{i,n,f}$ indicate the energies of the initial, intermediate and final channels, respectively

 E_n is a complex number whose imaginary component represents the offshell propagation through the virtual intermediate states

The unit cross section

In the $\sigma(E_p, A)$ the specificity of the single or double charge exchange is express through the volume integrals of the potentials: the other factors are general features of the scattering.

Fig. 18. Cross-sections $\sigma/(\mu N^{"})$ for G¹ transitions in the (⁷Li, ⁷Be) reactions at 03 and B(G¹) values μ and N["] are the reduced mass and the distortion factor, respectively [197]

B(GT;CEX)/B(GT; β -decay) ~ 1 within a few % especially for the strongest transitions

¹¹⁶Sn(¹⁸O,¹⁸F)¹¹⁶In CEX data reduction

¹¹⁶Sn(¹⁸O,¹⁸Ne)¹¹⁶Cd DCEX data reduction

The experiment ¹¹⁶Sn(¹⁸O,¹⁸Ne)¹¹⁶Cd @ 15 MeV/u

- ✓ E_{beam} =15MeV/u, ¹¹⁶Sn target thickness 323 µg/cm²
- ✓ 2.7 mC integrated charge in 45 BTU
- ✓ Detector and beam transport performances studied up to 8 enA

Clementina Agodi – PAC - Laboratori Nazionali del Sud – 24 Ottobre 2016

Study of the $^{18}O + ^{116}Sn$ at 15 MeV/u

Partial data-set in the case of identified ¹⁸Ne ejectiles : DCE channel

 θ_{foc} - X_{foc} correlation for the identified DCE channel: ¹¹⁶Sn(¹⁸O,¹⁸Ne)¹¹⁶Cd at 15 MeV/u. The red line is the result of simulation with a narrow cut in the vertical phase space for the transition to the ¹¹⁶Cd_{gs}.

Clementina Agodi – PAC - Laboratori Nazionali del Sud – 24 Ottobre 2016

- ✓ Detector and beam transport performances studied up to 6 enA
- ✓ Realistic cross section estimate for DCE

Clementina Agodi – PAC - Laboratori Nazionali del Sud – 24 Ottobre 2016

¹²C contaminant in the target

Preliminary plot of the parameters θ_{foc} (horizontal angle) and X_{foc} (horizontal position), measured at the focal plane for the selected ²⁰Ne ejectiles (two-proton transfer channel). The red points in the figure represent the simulated events of the transitions due to ¹²C contaminant in the target. The events which are at the right side of the transition to the ¹²C(¹⁸O,²⁰Ne)¹⁰Be_{g.s.} are due to the ¹¹⁶Sn and are free from contamination. A supplementary run on carbon target was also performed for background subtraction.

¹¹⁶Cd(²⁰Ne,²⁰O)¹¹⁶Sn DCEX reaction @ 15 MeV/A

Experiment at 15 MeV/A

C. Agodi, J. Bellone, R. Bijker, D. Bonanno, D. Bongiovanni, V. Branchina, M.P. Bussa, L. Busso, L. Calabretta, A. Calanna, D. Calvo, F. Cappuzzello, D. Carbone, M. Cavallaro, M. Colonna, G. D'Agostino, N. Deshmukh, S. Ferrero, A. Foti, P. Finocchiaro, G. Giraudo, V. Greco, F. Iazzi, R. Introzzi, G. Lanzalone, A. Lavagno, F. La Via, J.A. Lay, G. Litrico, D. Lo Presti, F. Longhitano, A. Muoio, L. Pandola, F. Pinna, S. Reito, D. Rifuggiato, M.V. Ruslan, G. Santagati, E. Santopinto, L. Scaltrito, S. Tudisco

INFN - Laboratori Nazionali del Sud, Catania, Italy, INFN - Sezione di Catania, Catania, Italy Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy, INFN - Sezione di Torino, Torino, Italy, Politecnico di Torino, Italy INFN - Sezione di Genova, Genova, Italy, CNR-IMM, Sezione di Catania, Italy, Università degli Studi di Enna "Kore", Enna, Italy

T. Borello-Lewin, P. N. de Faria, J.L. Ferreira, R. Linares, J. Lubian, N.H. Medina, J.R.B. Oliveira, M.R.D. Rodrigues, D.R. Mendes Junior, V. Zagatto

Instituto de Física, Universidade Federal Fluminense, Niterói, RJ, Brazil

Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil

X. Aslanoglou, A. Pakou, O. Sgouros, V. Soukeras, G. Souliotis,

Department of Physics and HINP, The University of Ioannina, Ioannina, Greece

Department of Chemistry and HINP, National and Kapodistrian University of Athens, Greece

E. Aciksoz, I. Boztosun, A. Hacisalihoglu, S.O. Solakcı,

Akdeniz University, Antalya, Turkey

L. Acosta, E.R. Chávez Lomelí,

Universidad Nacional Autónoma de México

S. Boudhaim, M.L. Bouhssa, Z. Housni, A. Khouaja, J. Inchaou

Université Hassan II – Casablanca, Morocco

N. Auerbach,

School of Physics and Astronomy Tel Aviv University, Israel

H. Lenske,

University of Giessen, Germany

Spokespersons: C. Agodi (agodi@Ins.infn.it), F. Cappuzzello (cappuzzello@Ins.infn.it) \