

Terzo Incontro Nazionale di Fisica Nucleare INFN2016

The NUMEN Project:
 ${ }^{116} \mathrm{Sn}\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{Ne}\right){ }^{116} \mathrm{Cd}$ and ${ }^{116} \mathrm{Cd}\left({ }^{20} \mathrm{Ne},{ }^{20} \mathrm{O}\right){ }^{116} \mathrm{Sn}$ DCEX reactions preliminary results

A basic question in modern Physics

From neutrino oscillations we know \square neutrino mass $\neq 0$

What about the m_{v} absolute value and the neutrino nature:

Dirac or Majorana particle?

a) $2 v$ DBD: (A, Z)
$(A, Z+2)+2 e^{-}+2 v_{e}$ $T_{1 / 2} \approx 10^{19-21} y$

Described for the first time
by Maria Goeppert-Mayer (1935)
b) $0 v$ DBD: $(A, Z) \quad(A, Z+2)+2 e^{-}$

$$
T_{1 / 2}>10^{24} y
$$

Experimental signature for $\beta \beta$

- Respect the conservation law.
- Does not distinguish between Dirac and Majorana
- Experimentally observed in several nuclei
${ }^{82} \mathrm{Se},{ }^{100} \mathrm{Mo},{ }^{48} \mathrm{Ca},{ }^{76} \mathrm{Ge}, .$.
- Neutrino has mass
- Neutrino is Majorana particle
- Violates the leptonic number conservation
- Experimentally not observed
- Forbidden in the Standard Model

A basic question in modern Physics

From neutrino oscillations we know \longrightarrow neutrino mass $\neq 0$
What about the m_{v} absolute value and the neutrino nature:
Dirac or Majorana particle?

a) $2 v$ DBD: (A. 71 rare $O v B 6$ decay is peutrino and to extract in onsens notion law. Does not distinguish between Dirac and Majorana NUMEN

Dirac or Majorana particle?

Majorana or Dira
by Maria Goeppert-Mayer (1935)
b) $0 v$ DBD: $(A, Z) \quad(A, Z+2)+2 e^{-}$

$$
T_{1 / 2}>10^{24} y
$$

- Experimentally observed in several nuclei

$$
{ }^{82} \mathrm{Se},{ }^{100} \mathrm{Mo},{ }^{48} \mathrm{Ca},{ }^{76} \mathrm{Ge}, . . .
$$

- Neutrino has mass
- Neutrino is Majorana particle
- Violates the leptonic number conservation
- Experimentally not observed
- Forbidden in the Standard Model

The role of nuclear physics

In the $0 v \beta \beta$ the decay rate can be expressed as a product of independent factors, that also depends on a function containing physics beyond the Standard Model throught the masses and the mixing coefficients of the neutrinos species :

[7] J. Menéndez, A. Poves, E. Caurier and F. Nowacki, Nucl. PhyAA A818, 139 (2009)
[8] Y. Iwata, N. Shimizu, T. Otsuka, Y. Utsuno, J. Menéndez, M. Honma and T. Abe,Phys. Rev.Lett.116, 112502 (2016)
[9] A. Neacsu and M. Horoi, Phys. Rev. C93, 024308 (2016).
[11] 」 Hyuärinen and J. Suhonen Phys. Rev. C87, 024613 (2015)
12]. క̌imkvic, V. Rodin A. Faessler and P. Vogel Phys. Rev.
121 N. 'ópez Vaquero, P. R Rodriguez and I L Egido, Phev. C87, 045501 (2013).
[13] N. Looez Vaner, .R. Rodiguez and . Legido, Phys. Rev. Lett.111, 142501(2013).
[14] J. Yao, L. Song, K. Hagino, P. Ring and J. Meng, Phys. Rev.C91, 024316 (2015).

The role of nuclear physics

In the $0 v \beta \beta$ the decay rate can be expressed as a product of independent factors, that also depends on a function containing physics beyond the Standard Model throught the masses and the mixing coefficients of the neutrinos species:

Thus, if the $M^{0 v 86}$ nuclear matrix elements were known with sufficient precision, the neutrino mass could be established from OvB6 decay rate measurements.
[7] J. Menéndez, A. Poves, E. Caurier and F. Nowacki, Nucl. PhyAA A818, 139 (2009)
[8] Y. Iwata, N. Shimizu, T. Otsuka, Y. Utsuno, J. Menéndez, M. Honma and T. Abe,Phys. Rev.Lett.116, 112502 (2016), [101 Neacsu and N. Horoi, Phys. Rev. C93, 024308 (2016)
[11] J Hyvärinen and J Suhonen, Phys. Rev. C87 024613 (2015)
12] F. ̌̌im Wovic. V. Rodin A. Faessler. Ren P. Vogel Phys. Rev. 88
131 N. Li W V.
13] N. Lopez Vaquero, T. R. Rodriguz d. L. Egido, Phys. Rev. Lett.111, 142501(2013).
[14] J. Yao, L. Song, K. Hagino, P. Ring and J. Meng, Phys. Rev.C91, 024316 (2015).

Heavy-ion DCE

\checkmark Induced by strong interaction
\checkmark Sequential nucleon transfer mechanism $4^{\text {th }}$ order:
Brink's Kinematical matching conditions D.M.Brink, et al., Phys. Lett. B 40 (1972) 37
\checkmark Meson exchange mechanism $2^{\text {nd }}$ order
\checkmark Possibility to go in both directions

MAGNEX spectrometer @ LNS

Dipole
Trajectory reconstruction

Measured resolutions:

- Energy $\Delta E / E \sim 1 / 1000$
- Angle $\Delta \theta \sim 0.3^{\circ}$
- Mass $\Delta \mathrm{m} / \mathrm{m} \sim 1 / 160$

Transport Matrix

$$
\begin{aligned}
& M: P_{i} \rightarrow P_{f} \\
& M^{-1}: P_{f} \rightarrow P_{i}
\end{aligned}
$$

Factorization of the charge exchange cross-section

For single CEX:

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}(q, \omega)=\hat{o}_{\alpha}\left(E_{p}, A\right) F_{\alpha}(q, \omega) B_{T}(\alpha) B_{P}(\alpha) \quad \alpha=\text { Fermi (F) or Gamow-Teller (GT) } \\
& =K\left(E_{p}, 0\right)\left|J_{\alpha}\right|^{2} N_{\alpha}^{D} \quad B(\alpha)=\frac{1}{2 J_{i}+1}|M(\alpha)|^{2} \quad \text { C.J Guess,et al, PRC } 83064318 \text { (2011) }
\end{aligned}
$$

T.N.Taddeucci, et al, Nucl. Phys. A 469 (1987) 125
β-decay transition strengths (reduced matrix elements)

In the hypothesis of a surface localized process (for direct quasi elastic processes), in a simple model one can assume that the DCE process is just a second order charge exchange, where projectile and target exchange two uncorrelated isovector virtual mesons.

Generalization to DCE:
In analogy to the single charge-exchange, the dependence of the cross-section from q is represented by a Bessel function.

$$
{\frac{d \sigma^{D C E}}{d \Omega}}^{\left.(q, \omega)=\hat{\sigma}_{\alpha}^{D C E}\left(E_{p}, A\right) F_{\alpha}^{D C E}(q, \omega) B_{T}^{D C E}(\alpha) B_{P}^{D C E}(\alpha)\right), ~(2)}
$$

unit cross-section

$$
\hat{\sigma}_{\alpha}^{D C E}\left(E_{p}, A\right)=K\left(E_{p}, 0\right)\left|J_{\alpha}^{D C E}\right|^{2} N_{\alpha}^{D}
$$

The NUMEN goals

1. The aim of the NUMEN Project: Towards the access of the NME involved in the half-life of the Ov6B decay by measuring the cross sections of HI induced DCE reactions with high accuracy.

$$
1 / T_{1 / 2}^{0 v}\left(0^{+} \rightarrow 0^{+}\right)=G_{0} M^{\beta \beta 0 v}\left|\frac{\left\langle m_{v}\right\rangle}{m_{e}}\right|^{2}
$$

2. A new generation of $D C E$ constrained $O \vee \beta \beta$ NME theoretical calculations can emerge: the measured DCE cross sections provide a powerful tool for theory in order to give very stringent constraints in the NME estimation. The DCE processes can be artificially generated in the lab.
3. The ratio of measured cross sections can give a model independent way to compare the sensitivity of different half-life experiments.

Strong impact in future development of the field, looking for a "golden isotope" ...

The pilot experiment: ${ }^{40} \mathrm{Ca}\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{Ne}\right){ }^{40} \mathrm{Ar} @$ LNS

Measured energy spectrum of ${ }^{40} \mathrm{Ar}$ at very forward angles with an energy resolution of FWHM ~ 0.5 MeV .

The position of the minima is well described by a Bessel function: such an oscillation pattern is not expected in complex multistep transfer reactions.

$$
\sigma^{\mathrm{DCE}}=260 \mathrm{nb} 0^{\circ}<\theta<2^{\circ}
$$

NUMEN experimental runs

March $2016{ }^{116} \mathrm{Cd}+{ }^{20} \mathrm{Ne} @ 15-22 \mathrm{MeV} / \mathrm{u}($ test $)$ at $\vartheta_{\text {opt }}=-3^{\circ}\left(0^{\circ}<\theta_{\text {lab }}<8^{\circ}\right)$

- DCEX reaction ${ }^{116} \mathrm{Cd}\left({ }^{20} \mathrm{Ne},{ }^{20} \mathrm{O}\right){ }^{116} \mathrm{Sn}$
- CEX reaction $\left.{ }^{116} \mathrm{Cd}\left({ }^{20} \mathrm{Ne},{ }^{20} \mathrm{~F}\right)\right)^{116} \mathrm{In}$
- $2 p$-transfer ${ }^{116} \mathrm{Cd}\left({ }^{20} \mathrm{Ne},{ }^{18} \mathrm{O}\right){ }^{118} \mathrm{Sn}$
- $1 p$-transfer ${ }^{116} \mathrm{Cd}\left({ }^{(20} \mathrm{Ne},{ }^{19} \mathrm{~F}\right)^{117} \mathrm{In}$

October 2015 - June $2016{ }^{116} \mathrm{Sn}+{ }^{18} \mathrm{O} @ 15 \mathrm{MeV} / \mathrm{u}$ at $\vartheta_{\text {opt }}=3^{\circ}\left(0^{\circ}<\theta_{\text {lab }}<9^{\circ}\right)$

- DCEX reaction ${ }^{116} \mathrm{Sn}\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{Ne}\right){ }^{116} \mathrm{Cd}$
- CEX reaction ${ }^{116} \mathrm{Sn}\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{~F}\right)^{116} \mathrm{In}$
- $2 p$-transfer $\left.{ }^{116} \mathrm{Sn}\left({ }^{18} \mathrm{O},{ }^{20} \mathrm{Ne}\right)\right)^{114} \mathrm{Cd}$
- 1p-transfer ${ }^{116} \mathrm{Sn}\left({ }^{18} \mathrm{O},{ }^{19} \mathrm{~F}\right)^{115} \mathrm{In}$
- $2 n$-transfer ${ }^{116} \mathrm{~S}\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{118} \mathrm{Sn}$

NUMEN

$\left.{ }^{116} \mathrm{Sn}\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{Ne}\right)\right)^{116} \mathrm{Cd}$ DCEX data reduction

Z identification

A identification

${ }^{116} \mathrm{Cd}\left({ }^{20} \mathrm{Ne},{ }^{20} \mathrm{O}\right){ }^{116} \mathrm{Sn}$ DCEX reaction @ $15 \mathrm{MeV} / \mathrm{A}$

After ray reconstruction

${ }^{116} \mathrm{Cd}\left({ }^{20} \mathrm{Ne},{ }^{20} \mathrm{O}\right){ }^{116} \mathrm{Sn}$ DCEX reaction @ $15 \mathrm{MeV} / \mathrm{A}$

DCE transitions to ${ }^{116} \mathrm{Sn}_{\mathrm{gs}}$ and first excited 2^{+}state at 1.29 MeV are clearly separated (energy resolution ~ 0.75 MeV) and characterized by a remarkable cross section of about 66 nb and 38 nb , respectively.

The role of the competing processes

Multi nucleon transfer suppressed respect to DCE

Energy spectrum $\left(E x=Q_{0}-Q\right)$ of the ${ }^{116} \mathrm{Cd}\left({ }^{20} \mathrm{Ne},{ }^{18} \mathrm{O}\right){ }^{118} \mathrm{Sn}$ two-proton stripping reaction at $15 \mathrm{MeV} / \mathrm{u} 0^{\circ}<\boldsymbol{\vartheta}_{\mathrm{lab}}<9^{\circ}$

Reconstructed energy spectrum of the ${ }^{116} \mathrm{Cd}\left({ }^{20} \mathrm{Ne},{ }^{20} \mathrm{O}\right){ }^{116} \mathrm{Sn}$ DCE reaction at $15 \mathrm{MeV} / \mathrm{u} 0^{\circ}<\boldsymbol{\vartheta}_{\mathrm{lab}}<9^{\circ}$

Perspectives

1. Theoretical upgrade

New Structure and Dynamic calculations
2. Present technology is not enough to measure at very high rates of heavy ions! \longrightarrow Cs and Magnex upgrade

Magnex upgrade:

- FPD gas tracker \longrightarrow GEM - like tracker system
- Si detectors \longrightarrow SiC detectors
- new Front-End electronics
- array of detectors for measuring the coincident γ-rays
- enhancement of the maximum magnetic rigidity
 Thank you!

NUMEN 2015 Workshop - LNS 1-2 dicembre 2015

NUMEN

NUclear Matrix Elements for Neutrinoless
double beta decay

Sut

C. Agodi, J. Bellone, R. Bijker, D. Bonanno, D. Bongiovanni, V. Branchina, M.P. Bussa, L. Busso, L. Calabretta, A. Calanna, D. Calvo, F. Cappuzzello, D. Carbone, M. Cavallaro, M. Colonna, G. D’Agostino, N. Deshmukh, S. Ferrero, A. Foti, P. Finocchiaro, G. Giraudo, V. Greco, F. Iazzi, R. Introzzi, G. Lanzalone, A. Lavagno, F. La Via, J.A. Lay, G. Litrico, D. Lo Presti, F. Longhitano, A. Muoio, L. Pandola, F. Pinna, S. Reito, D. Rifuggiato, M.V. Ruslan, G. Santagati, E. Santopinto, L. Scaltrito, S. Tudisco

INFN - Laboratori Nazionali del Sud, Catania, Italy, INFN - Sezione di Catania, Catania, Italy Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy, INFN - Sezione di Torino, Torino, Italy, Politecnico di Torino, Italy INFN - Sezione di Genova, Genova, Italy, CNR-IMM, Sezione di Catania, Italy, Università degli Studi di Enna "Kore", Enna, Italy
T. Borello-Lewin, P. N. de Faria, J.L. Ferreira, R. Linares, J. Lubian, N.H. Medina, J.R.B. Oliveira, M.R.D. Rodrigues, D.R. Mendes Junior, V. Zagatto Instituto de Física, Universidade Federal Fluminense, Niterói, RJ, Brazil

Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil
X. Aslanoglou, A. Pakou, O. Sgouros, V. Soukeras, G. Souliotis,

Department of Physics and HINP, The University of Ioannina, Ioannina, Greece
Department of Chemistry and HINP, National and Kapodistrian University of Athens, Greece

E. Aciksoz, I. Boztosun, A. Hacisalihoglu, S.O. Solakcı,

Akdeniz University, Antalya, Turkey
L. Acosta, E.R. Chávez Lomelí,

Universidad Nacional Autónoma de México

S. Boudhaim, M.L. Bouhssa, Z. Housni, A. Khouaja, J. Inchaou

Université Hassan II - Casablanca, Morocco

Thank you!

[^0]Back-up slides

$0 v \beta \beta$ vs HI-DCE

1. Initial and final states: Parent/daughter states of the $0 v B B$ are the same as those of the target/residual nuclei in the DCE;
2. Spin-Isospin mathematical structure of the transition operator: Fermi, Gamow-Teller and rank-2 tensor together with higher L components are present in both cases;
3. Large momentum available: A linear momentum as high as $100 \mathrm{MeV} / \mathrm{c}$ or so is characteristic of both processes;
4. Non-locality: both processes are characterized by two vertices localized in two valence nucleons. In the ground to ground state transitions in particular a pair of protons/neutrons is converted in a pair of neutrons/protons so the non-locality is affected by basic pairing correlation length;
5. In-medium processes: both processes happen in the same nuclear medium, thus quenching phenomena are expected to be similar;
6. Relevant off-shell propagation in the intermediate channel: both processes proceed via the same intermediate nuclei off-energy-shell even up to 100 MeV .

Planned experimental activity

NUclear REactions for neutrinoless double beta decay

Reactions	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$
${ }^{20} \mathrm{Ne}+{ }^{116} \mathrm{Cd}$ at $15 \mathrm{MeV} / \mathrm{u}$	$\sim 60 \mathrm{BTU}$		
${ }^{18} \mathrm{O}+{ }^{40} \mathrm{Ca}$ at $25 \mathrm{MeV} / \mathrm{u}$		$\sim 45 \mathrm{BTU}$	
${ }^{18} \mathrm{O}+{ }^{76} \mathrm{Se}$ at $15 \mathrm{MeV} / \mathrm{u}$		$\sim 75 \mathrm{BTU}$	
${ }^{20} \mathrm{Ne}+{ }^{76} \mathrm{Ge}$ at $15 \mathrm{MeV} / \mathrm{u}$		$\sim 60 \mathrm{BTU}$	
${ }^{20} \mathrm{Ne}+{ }^{116} \mathrm{Cd}$ at $25 \mathrm{MeV} / \mathrm{u}$			$\sim 60 \mathrm{BTU}$
${ }^{20} \mathrm{Ne}+{ }^{76} \mathrm{Ge}$ at $25 \mathrm{MeV} / \mathrm{u}$			$\sim 60 \mathrm{BTU}$

From the pilot experiment towards the "hot cases": The four phases of NUMEN project

>Phase1: the experiment feasibility
${ }^{40} \mathrm{Ca}\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{Ne}\right){ }^{40} \mathrm{Ar} @ 270 \mathrm{MeV}$ already done: the results demostrate the technique feasibility.
>Phase2: toward "few hot" cases optimizing experimental conditions and getting first result
Upgrading of CS and MAGNEX, preserving the access to the present facility. Tests will be crucial.
> Phase3: the facility upgrade
Disassembling of the old set-up and re-assembling of the new ones will start: about 18-24 months
> Phase4: the experimental campaign
High beam intensities (some $\mathrm{p} \mu \mathrm{A}$) and long experimental runs to reach integrated charge of hundreds of mC up to C , for the experiments in coincidences, for all the variety of isotopes for $0 \vee B 8$ decay $\left({ }^{48} \mathrm{Ca},{ }^{82} \mathrm{Se},{ }^{96} \mathbf{Z r},{ }^{100} \mathbf{M o},{ }^{110} \mathbf{P d},{ }^{124} \mathrm{Sn},{ }^{128} \mathbf{T e},{ }^{136} \mathrm{Xe},{ }^{148} \mathrm{Nd},{ }^{150} \mathbf{N d},{ }^{154} \mathrm{Sm},{ }^{160} \mathbf{G d},{ }^{198} \mathbf{P t}\right)$.

PRELIMINARY TIME TABLE										
year	2013	2014	2015	2016	2017	2018	2019	2020		
Phase1										
Phase2										
Phase3										
Phase4										

MAGNEX Focal Plane Detector

$>$ Gas-filled hybrid detector
Drift chamber $1400 \mathrm{~mm} \times 200 \mathrm{~mm} \times 100 \mathrm{~mm}$
Pure isobutane pressure range: 5-100 mbar; 600-800 V, wires 20 micron
Schematic view of the MAGNEX Focal Plane Detector: a) side view; b) top view.

$>$ Wall Si $500 \mu \mathrm{~m}$ 20 columns, 3 rows

The role of the transfer reaction NUMand the competing processes

Less than 1% effect in the DCE cross section

single charge exchang					
${ }^{40} \mathrm{Ca}$ ${ }^{40} \mathrm{~K}$ 					

x-section $\left(2 \mathrm{MeV}<\mathrm{E}_{\mathrm{x}}<3 \mathrm{MeV}\right)$
$\approx 0.5 \mathrm{mb} / \mathrm{sr}$
Extracted $\mathrm{B}(\mathrm{GT})=0.087$
$B(G T)$ from $\left({ }^{3} \mathrm{He}, \mathrm{t}\right)=0.083$

HI Single CEX @ LNS

Extracted upper limit for $B(G T)<0.8$
$B(G T)$ from $\left({ }^{(},{ }^{2} \mathrm{He}\right)=0.4$
S.Rakers, et al., PRC 71 (2005) 054313

The pilot experiment:

$>{ }^{18} \mathrm{O}^{7+}$ beam from LNS Cyclotron at $270 \mathrm{MeV}(10 \mathrm{pnA})$
$>{ }^{40} \mathrm{Ca}$ solid target of $\mathbf{3 0 0} \boldsymbol{\mu g} / \mathrm{cm}^{2}$
> Ejectiles detected by the MAGNEX spectrometer
$>$ Angular setting $\theta_{o p t}=4^{\circ} \longrightarrow-2^{\circ}<\theta_{l a b}<10^{\circ}$

Analogia con il decadimento 6

L'interazione forte nucleone-nucleone V_{NN} presenta
isoscalari isovettoriali
$V_{N N} \equiv V_{i j}\left(r_{i j}\right)=V_{O}+V_{\sigma}\left(\overrightarrow{\sigma_{i}} \cdot \overrightarrow{\sigma_{j}}\right)+V_{S O}(\vec{S} \cdot \vec{L})+V_{T} S_{T}+\tau_{i} \cdot \tau_{j}\left[V_{\tau}+V_{\sigma \tau}\left(\overrightarrow{\sigma_{i}} \cdot \overrightarrow{\sigma_{j}}\right)+V_{S O}^{\tau}(\vec{S} \cdot \vec{L})+V_{T}^{\tau} S_{T}\right]$
Fermi-like Gamow Teller-like
\rightarrow ampiezze di transizioni hanno struttura molto simile a quelle del decadimento β essendo tali transizioni permesse ($\mathrm{L}=0$) distinte in:
\rightarrow Fermi, $\mathrm{S}=0 \rightarrow \Delta \mathrm{~J}=0$ e $O_{F}=\tau^{ \pm}$
$>$ Gamow-Teller, $\mathrm{S}=1 \rightarrow \Delta \mathrm{~J}=1$ e $O_{G T}=\sigma \tau^{ \pm}$

Connessione tra decadimento β e reazioni di scambio di carica notata alla fine degli anni ' $50{ }^{1)}$. Formalizzata ${ }^{3)}$ per sistemi leggeri, sotto opportune condizioni ($q \sim 0, L=0$) vale la fattorizzazione:

$$
\frac{d \sigma}{d \Omega}\left(q, E_{x}\right)=\hat{\sigma}_{\alpha}\left(E_{p}, A\right) F_{\alpha}\left(q, E_{x}\right) B_{T}(\alpha) B_{p}(\alpha)
$$

Espressione che vale anche per ioni pesanti entro un 20-30\% di precisione

The volume integrals

Nuclear spin and isospin excitations

Franz Osterfeld

Reviews of Modern Physics, Vol. 64, No. 2, April 1992
\checkmark Volume integrals are larger at smaller energies
\checkmark They enter to the fourth power in the unit cross section!
\checkmark GT-F competion at low energy

FIG. 15. Energy and momentum dependence of the free nucleon-nucleon t_{F} matrix. The upper part of the figure shows the energy dependence of the central components of the effective t_{F} matrix at zero-momentum transfer (including direct and exchange terms). The G-matrix interaction of Bertsch et al. (1977) was used below 100 MeV and joined smoothly to the t_{F} matrix above 100 MeV . The lower figures show the momentum dependence of the $135-\mathrm{MeV} t_{F}$ matrix for natural-(left figure) and unnatural-(right figure) parity transitions. Isoscalar and isovector central (C), spin-orbit ($L S$), and tensor (T) components are shown. From Petrovich and Love (1981).

Factorization of the double charge exchange cross-section

Under the hypotesis of surface localization, one can assume that the DCE process is just a second order charge exchange: DCE cross sections can be factorized in a nuclear structure term, containing the matrix element, and a nuclear reaction factor.

```
generalization to DCE:
In analogy to the single charge-exchange, the dependence of the cross-section
                                    from q is represented by a Bessel function.
    \mp@subsup{\frac{d\sigma}{d}}{d\Omega}{DCE}}(q,\omega)=\mp@subsup{\hat{\sigma}}{\alpha}{DCE}(\mp@subsup{E}{p}{},A)\mp@subsup{F}{\alpha}{DCE}(q,\omega)\mp@subsup{B}{T}{DCE}(\alpha)\mp@subsup{B}{P}{DCE}(\alpha
unit cross-section
\mp@subsup{\sigma}{\alpha}{DCE}}(\mp@subsup{E}{p}{},A)=K(\mp@subsup{E}{p}{},0)\\mp@subsup{\}{\alpha}{DCE}\mp@subsup{|}{}{2}\mp@subsup{N}{\alpha}{D
```

A wide range of DCE cross sections has never been accurately measured due to :
> The difficult to perform zero degrees measurements.
> The poor yields in the measured energy spectra and angular distributions, due to the very low cross sections.
> The difficulty to disentangle possible contributions of multi-nucleon transfer reactions leading to the same final state.

Factorization of the charge exchange cross-section

므므믈

crarge excriarige crossisecion

-

for single CEX:

$B(\alpha)=\frac{1}{2 J_{i}+1}|M(\alpha)|^{2} \quad$| deceay transtion strengths |
| :---: |
| (reauced matix elements) |

unit cross-section

$$
\frac{d \sigma}{d \Omega}(q, \omega)=\hat{\sigma}_{\alpha}\left(E_{p}, A\right) F_{\alpha}(q, \omega) B_{T}(\alpha) B_{P}(\alpha)
$$

$$
\hat{\sigma}\left(E_{p}, A\right)=K\left(E_{p}, 0\right)\left|J_{\alpha}\right|^{2} N_{\alpha}^{D}
$$

The factor $F_{\alpha}(q, \omega)$ describes the shape of the cross-section distribution as a function of the linear momentum transfer and the excitation
T.N.Taddeucci, et al, Nucl. Phys. A 469 (1987) 125 energy.

($\left.{ }^{7} \mathrm{Li},{ }^{7} \mathrm{Be}\right) \quad$ S. Nakayama PRC 60 (1999) 047303

 reduod mass and the disotition faxior, repediviay [197 .
$B(G T ; C E X) / B(G T ; \beta$-decay $) \sim 1$ within a few \% especially for the strongest transitions

More about NME

$$
\begin{gathered}
\left.\left|M_{\varepsilon}^{\beta \beta 0 v}\right|^{2}=\left|\left\langle\Psi_{f}\right| \hat{O}_{\varepsilon}^{\beta \beta 0 v}\right| \Psi_{i}\right\rangle\left.\right|^{2} \\
\hat{O}_{\varepsilon}^{\beta \beta 0 v}= \begin{cases}g_{A}^{2} \sum_{i, j} \sigma_{i} \sigma_{j} \tau_{i} \tau_{j} & \text { Gor L = 0 decays } \\
g_{V}^{2} \sum_{i, j} \tau_{i} \tau_{j} & \text { Fermi like }\end{cases}
\end{gathered}
$$

Warning: Normally the coupling constants g_{A} and g_{V} are kept out form the matrix element and we talk of reduced matrix elements

$$
\left|M_{\alpha}^{\beta \beta 0 v}\right|^{2}=\left|M_{\alpha}\right|^{2}=B_{\alpha}
$$

The 3 operators are both present in weak and strong interaction

Radial dependence

$$
\Delta r \Delta p \sim h / 2 \pi
$$

$$
\Delta \mathrm{r} \sim 2 \mathrm{fm} \quad \longrightarrow \quad \Delta \mathrm{p} \sim 0.5 \mathrm{fm}^{-1} \sim 100 \mathrm{MeV} / \mathrm{c}
$$

All the L are possible and as a consequence the operator behaves as the Coulomb potential
$f(r) \propto 1 / r$ neutrino potential

Similarly for the DCE!

NME $2 v \beta \beta$ - decay
$1 / T_{1 / 2}^{2 v}\left(0^{+} \rightarrow 0^{+}\right)=G_{2 v}\left|M^{\beta \beta 2 v}\right|^{2}$
q-transfer like ordinary $\boldsymbol{\beta}$-decay ($q \sim 0.01 \mathrm{fm}^{-1} \sim 2 \mathrm{MeV} / \mathrm{c}$)
only allowed decays possible

Can be determined via charge-exchange reactions in the
(n, p) and (p, n) direction (e.g. (d, ${ }^{2} \mathrm{He}$) or ($3 \mathrm{He}, \mathrm{t}$))

NME $0 v \beta \beta$ - decay

$1 / T_{1 / 2}^{0 v}\left(0^{+} \rightarrow 0^{+}\right)=G_{0 v}\left|M^{\beta \beta 0 v}\right|^{2}\left|\frac{\left\langle m_{v}\right\rangle}{m_{e}}\right|^{2}$
neutrino enters as virtual particle, $\mathbf{q} \sim \mathbf{0 . 5 \mathrm { fm } ^ { - 1 }}(\sim 100 \mathrm{MeV} / \mathrm{c})$
degree of forbiddeness weakened

NOT (easily) accessible via charge-exchange reactions
$|\boldsymbol{n}\rangle\langle\boldsymbol{n}|$
Closure approximation

The unit cross section

In the $\sigma\left(\mathrm{E}_{\mathrm{p}}, \mathrm{A}\right)$ the specificity of the single or double charge exchange is express through the volume integrals of the potentials: the other factors are general features of the scattering.

Single charge-exchange

$J_{S T}$ Volume integral of the $V_{S T}$ potential

Double charge-exchange

$J_{S T}$ Volume integral of the $V_{S T} G V_{S T}$ potential, where G is the intermediate channel propagator:

$$
G=\sum_{n} \frac{|n\rangle\langle n|}{E_{n}-\left(E_{i}+E_{f}\right) / 2}
$$

where $E_{i, n, f}$ indicate the energies of the initial, intermediate and final channels, respectively
E_{n} is a complex number whose imaginary component represents the offshell propagation through the virtual intermediate states

The unit cross section

In the $\sigma\left(\mathbb{E}_{\mathrm{p}}, \mathbf{A}\right)$ the specificity of the single or double charge exchange is express through the volume integrals of the potentials: the other factors are general features of the scattering.

Single charge-exchange

$J_{S T}$ Volume integral of the $V_{S T}$ potential

Double charge-exchange

$J_{S T}$ Volume integral of the $V_{S T} G V_{S T}$ potential, where G is the intermediate channel propagator:

$$
G=\sum_{n} \frac{|n|\langle n|}{E_{n}-\left(E_{l}+E_{f}\right) / 2}
$$

E_{n} is a complex number whose imaginary component represents the off-shell propagation through the virtual intermediate states

If known $\boldsymbol{\sigma}\left(E_{p}, A\right)$ would allow to determine the NME from DCE cross section measurement, whatever is the strenght fragmentation

In single charge exchange reactions
Y. Fujita Prog. Part. Nuc. Phys. 66 (2011) 549
F. Osterfeld Rev. Mod. Phys. 64 (1992) 491
H. Ejiri Phys. Rep. 338 (2000) 256
T.N. Taddeucci Nucl. Phys. A 469 (1997) 125
($\left.{ }^{7} \mathrm{Li},{ }^{7} \mathrm{Be}\right) \quad$ S. Nakayama PRC 60 (1999) 047303

 relucod mass and the distorion factor, revectively (197].

Search for $0 v \beta \beta$ decay: a worldwide race

Experiment	Isotope	Lab	Status
GERDA	${ }^{76} \mathrm{Ge}$	LNGS	Phase I completed Migration to Phase II
CUOREO /CUORE	${ }^{130} \mathrm{Te}$	LNGS	Data taking / Construction
Majorana Demonstrator	${ }^{76} \mathrm{Ge}$	SURF	Construction

Figure 2.2. Approximate timelines for the presented projects. The orange bars represent nominal construction periods and green illustrates actual or intended running.

${ }^{116} \mathrm{Sn}\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{Ne}\right){ }^{116} \mathrm{Cd}$ DCEX data reduction

${ }^{18} \mathrm{Ne}^{10+}$

The experiment ${ }^{116} \mathrm{Sn}\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{Ne}\right){ }^{116} \mathrm{Cd}$ @ $15 \mathrm{MeV} / \mathrm{u}$

$\checkmark \quad \mathrm{E}_{\text {beam }}=15 \mathrm{MeV} / \mathrm{u},{ }^{116} \mathrm{Sn}$ target thickness $323 \mu \mathrm{~g} / \mathrm{cm}^{2}$
$\checkmark \quad 2.7 \mathrm{mC}$ integrated charge in $\mathbf{4 5} \mathrm{BTU}$
\checkmark Detector and beam transport performances studied up to 8 enA

dentification of ${ }^{18} \mathrm{~F}$ (CEX)

Study of the ${ }^{18} \mathrm{O}+{ }^{116} \mathrm{Sn}$ at $15 \mathrm{MeV} / \mathrm{u}$

Partial data-set in the case of identified ${ }^{18} \mathrm{Ne}$ ejectiles : DCE channel

$\theta_{\text {foc }}-X_{\text {foc }}$ correlation for the identified DCE channel: ${ }^{116} \mathrm{Sn}\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{Ne}\right){ }^{116} \mathrm{Cd}$ at $15 \mathrm{MeV} / \mathrm{u}$.
The red line is the result of simulation with a narrow cut in the vertical phase space for the transition to the ${ }^{116} \mathrm{Cd}_{\mathrm{gs}}$.
n on ${ }^{116} \mathrm{Sn}\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{Ne}\right){ }^{116} \mathrm{Cd}$
$\checkmark \quad \mathrm{E}_{\text {beam }}=15 \mathrm{MeV} / \mathrm{u}$, target thickness $\mathbf{4 0 0} \mu \mathrm{g} / \mathrm{cm}^{2}$
$\checkmark 150 \mu \mathrm{C}$ integrated charge in 50 hours at 1 enA (including dead time 50\%)
\checkmark Detector and beam transport performances studied up to 6 enA
\checkmark Realistic cross section estimate for DCE

Clementina Agodi - PAC - Laboratori Nazionali del Sud - 24 Ottobre 2016
${ }^{12} \mathrm{C}$ contaminant in the target
dif isicica Nucleare

Preliminary plot of the parameters $\theta_{\text {foc }}$ (horizontal angle) and $X_{f o c}$ (horizontal position), measured at the focal plane for the selected ${ }^{20} \mathrm{Ne}$ ejectiles (two-proton transfer channel). The red points in the figure represent the simulated events of the transitions due to ${ }^{12} \mathrm{C}$ contaminant in the target. The events which are at the right side of the transition to the ${ }^{12} \mathrm{C}\left({ }^{18} \mathrm{O},{ }^{20} \mathrm{Ne}\right)^{10} \mathrm{Be}_{\text {g.s. }}$ are due to the ${ }^{116} \mathrm{Sn}$ and are free from contamination. A supplementary run on carbon target was also performed for background subtraction.

\mathbb{N} NUMEN
 ${ }^{116} \mathrm{Cd}\left({ }^{20} \mathrm{Ne},{ }^{20} \mathrm{O}\right){ }^{116} \mathrm{Sn}$ DCEX reaction @ $15 \mathrm{MeV} / \mathrm{A}$

Experiment at $15 \mathrm{MeV} / \mathrm{A}$

C. Agodi, J. Bellone, R. Bijker, D. Bonanno, D. Bongiovanni, V. Branchina, M.P. Bussa, L. Busso, L. Calabretta, A. Calanna, D. Calvo, F. Cappuzzello, D. Carbone, M. Cavallaro, M. Colonna, G. D’Agostino, N. Deshmukh, S. Ferrero, A. Foti, P. Finocchiaro, G. Giraudo, V. Greco, F. Iazzi, R. Introzzi, G. Lanzalone, A. Lavagno, F. La Via, J.A. Lay, G. Litrico, D. Lo Presti, F. Longhitano, A. Muoio, L. Pandola, F. Pinna, S. Reito, D. Rifuggiato, M.V. Ruslan, G. Santagati, E. Santopinto, L. Scaltrito, S. Tudisco

INFN - Laboratori Nazionali del Sud, Catania, Italy, INFN - Sezione di Catania, Catania, Italy Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy, INFN - Sezione di Torino, Torino, Italy, Politecnico di Torino, Italy INFN - Sezione di Genova, Genova, Italy, CNR-IMM, Sezione di Catania, Italy, Università degli Studi di Enna "Kore", Enna, Italy

T. Borello-Lewin, P. N. de Faria, J.L. Ferreira, R. Linares, J. Lubian, N.H. Medina, J.R.B. Oliveira, M.R.D. Rodrigues, D.R. Mendes Junior, V. Zagatto

Instituto de Física, Universidade Federal Fluminense, Niterói, RJ, Brazil
Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil
X. Aslanoglou, A. Pakou, O. Sgouros, V. Soukeras, G. Souliotis,

Department of Physics and HINP, The University of Ioannina, Ioannina, Greece
Department of Chemistry and HINP, National and Kapodistrian University of Athens, Greece

E. Aciksoz, I. Boztosun, A. Hacisalihoglu, S.O. Solakcı,

Akdeniz University, Antalya, Turkey
L. Acosta, E.R. Chávez Lomelí,

Universidad Nacional Autónoma de México

S. Boudhaim, M.L. Bouhssa, Z. Housni, A. Khouaja, J. Inchaou

Université Hassan II - Casablanca, Morocco

N. Auerbach,

School of Physics and Astronomy Tel Aviv University, Israel

H. Lenske,

University of Giessen, Germany

\author{
Spokespersons: C. Agodi (agodi@Ins.infn.it), F. Cappuzzello (cappuzzello@Ins.infn.it) \}

}

[^0]: Spokespersons: C. Agodi (agodi@Ins.infn.it), F. Cappuzzello (cappuzzello@Ins.infn.it) \}

