

Terzo Incontro Nazionale di Fisica Nucleare INFN2016

Silicon Carbide for Nuclear Physics applications

Salvo Tudisco

14-16 Novembre 2016 Laboratori Nazionali di Frascati

Silicon Carbide Material

Was discovered in 1824 by **Jons Berzelius (**Swedish scientist) in the same year when he also discovered elemental Silicon.

Tetrahedra of Carbon and Silicon atoms with strong bonds in the crystal lattice. **Very hard and strong material**!

Si

С

Unlike of Si, **SiC** does not show a liquid phase, The only way to synthesize, purify and grow SiC raw material is by means of gaseous phases

SiC Growth

high temperature electro-chemical reaction reducing sand (SiO_2) in presence of excess carbon (Acheson in 1891).

General Properties of SiC

- high thermal conductivity -
- low thermal expansion
- high strength (hardness)
- chemical inertness

SiC wide-band-gap semiconductor

Energy gap => E_{sic} =3.28 eV > E_{si} =1.12 eV **Breakdown Field** => BF_{sic}=3-4 MV/cm > BF_{si}=0.3 MV/cm Saturated electron velocity $= v_{sic} > v_{sic}$

Applications on ELECTRONIS DEVICES

- High power
- High frequency
- High temperature
- **Radiation detectors**

BULK GROWTH

EPITAXIAL GROWTH

Bulk wafers are mainly used as a substrate to support the **Epitaxially** grown active layers.

Epitaxy allows a precise control of: layer thickness, doping and homogeneity, imperfections

Dopants are provided by gaseous precursors n-type by N or P and p-type by Be, B, Al, or Ga

SiC for radiation detection

Property	Diamond	GaN	4H SiC	Si
E _g [eV]	5.5	3.39	3.28	1.12
E _{breakdown} [V/cm]	10^{7}	$4 \cdot 10^{6}$	$3 - 4 \cdot 10^{6}$	-3.10^{5}
$\mu_{\rm e} [{\rm cm}^2/{\rm Vs}]$	1800	1000	800	1450
$\mu_{\rm h} [{\rm cm}^2/{\rm Vs}]$	1200	30	115	450
v _{sat} [cm/s]	$2.2 \cdot 10^{7}$	-	2.10^{7}	0.8.10 ⁷
Ζ	6	31/7	14/6	14
ε _r	5.7	9.6	9.7	N.9
e-h energy [eV]	13	8.9	7.6-8.4	3.6
Density [g/cm3]	3.515	6.15	3.22	2.33
Displacem. [eV]	43	≥15	30-40	13-15

• Wide band-gap (3.3eV)

→ Visible blind

→ Lower Leakage current

 High Breakdown
 ⇒ Advantage for Radiations hardness

 Different e-h mobility
 ⇒ Charge Identification pulse shape analysis

Fast devices→ Timing applications

- Signal
- → Less charge than Si, SiC≈Si/2
- → A problem for MIP!

Diamond	36 e/µm
SiC	51 e/µm
Si	89 e/um

→ No problem in all other case

- Higher displacement threshold
- → Radiation harder then Silicon

Applications

- UV Soft-X detection
- Charged Particle <u>detection</u> and <u>identification</u>
- Neutron detection

Radiation Hardness

E_m=max electric field

 $J^{(SiC)} \approx 10^{-3} J^{(Si)}$

S. Tudisco, INFN2016

 $J^{(SiC)} \approx 10^{-4} - 10^{-5} J^{(Si)}$

10⁻⁷

10⁻⁸

10⁻⁹

10⁻¹⁰

10⁻¹¹

10⁻¹²

10⁻¹³

10⁻¹⁴

- Small size devices (2-3 mm²)
- Thin Epi-layers (60-80 μm)

SiC Visible-blindness!

UV photo-detector applications

Optics Express Vol. 23, Issue 17, pp. 21657-21670 (2015)

- ⇒ Lowest dark current
- → Efficient transport of charge
- ⇒ Fast response
- ⇒ high purity and low defectivity (minimize charge trapping or recombination)

X-ray photo-detection and spectroscopy

G. Bertuccio et al. NIM A 652 (2011) 193–196
G. Bertuccio et al IEEE Trans. on Nucl.. Sci. 60 n° 2 (2013) 1436–1441

 ✓ neutrons and charged particles detection in plasmas

TOF distribution measured by the SiC detector for the Si-H-B (orange curve) and Si (blue curve) targets

A. Picciotto et al. Phys. Rev. X 4, 031030 (2014)

✓ Neutron detection

Fusion application (14 MeV DT neutrons) Neutron flux and fluence measurements (Spallation Source)

F. Franceschini and F. H. Ruddy, Properties and Applications of Silicon Carbide, InTech Book D. Szalkai et al. IEEE TRANS. ON NUCL. SCIE., 63, NO. 3, (2016)

✓ Radiation Hardeness

¹⁶O @ 35 MeV

G. Raciti et al. Nuclear Physics A 834 (2010) 784 M. De Napoli et al. NIMA 600 (2009) 618

INFN Activities on SiC

Cherenkov Light detection with Silicon Carbide

FIRB-INFN 2015

Silicon Carbide Detectors for Intense Luminosity Investigations and Applications

Call INFN 2016

INFN

Aims at the development of a SiC based, visible-blind, avalanche photodiode

Single (or few) photon detection capability

to detect Cherenkov light in the presence of visible radiation

(typically Cherenkov light produced in a scintillating crystal)

Two applications:

- Dual readout calorimetry (DREAM calorimetry concept)
- Fast timing in ToF-PET

NUMEN project

NUclear Matrix Elements of Neutrinoless Double Beta Decays by Heavy Ion Double Charge Exchange Reactions

DCE => 12 C, 18 O, 20 Ne to energies between 15 and 30 MeV/u

MAGNEX

Multiwire gas tracker and ΔE stage

From Multiwire gas tracker → to GEM gas tracker From 7 X 5 cm² silicon Wall → to 1 cm² telescopes wall

(Si detector dead @ 10⁹ implanted ions/cm²)

 $1 \text{ cm}^2 \Delta E$ -E telescope

Nuclear Reactions in Laser Plasmas

SiCILIA

Requirements

- **Radiation Hardness**
- Timing =>
 - Insensibility to the visible radiation \checkmark
 - X-ray sensitivity

Detectors working in plasmas environment

External institutions

CNR-IMM – Catania CNR-INO – Pisa

Companies

Fondazione Bruno Kessler (**FBK**) – Trento ST Microelectronics – Catania LPE – Catania (**LPE**)

Participating INFN research units

Global Deliverables

- Tens of detectors: epitaxial grow SiC (50-150 μm thick) semi-insulating SiC (500-1000 μm thick)
- Study of the performance in the electrons and ions detection (radiation hardness, energetic resolution, timing, etc.)
- Study of the performance in the neutrons and X-ray detection
- Study of the ions identification through the pules shape analysis
- A wall of tens of SiC telescopes equipped with a VMM ASIC front-end as demonstrator
- Performance of demonstrator in operative conditions

- ✓ Epitaxial grows
- ✓ Simulations
- ✓ Flow chart (p-n and Schottky junction)
- ✓ Test bench (electrical and physical characterization)
- ✓ Irradiation beam-lines preparation (INFN-LNS, UniMe, ILIL-Pi)

LNS Sample irradiation beam-line

* 0 degree beam-line

- Transported beams: p, He, C, O, Ne, Ar, Kr, Xe, ...
- Fast and easy positioning systems
- In-air and in-vacuum irradiations

LINAC @ UniMe

Electrons irradiation

- Energy
- Current
 - 1-200 mA 1-300 Hz

5 MeV

- Rep. Rate 1-300 l - Pulse duration 3 µsec

Epitaxial grows

10 μm epitaxial layers grown in LPE

STM - New Candela device for defects mapping @266nm

New system for PL spectroscopy @266nm for thick EPI-layer analysis

CANDELA Analysis Expected Yield 85 -100 % @ 10 μm Epi => 50% @ 100 μm Epi

PL Spectroscopy @325 nm

Simulations

Depletion Voltage for 100 micron EPI is 750 V

Breakdown > 10kV infinite planar junction

Oxide and Interface Trapped Charges

STMicroelectronics

SiC processing, some of the standard steps are missing (RTA, Ni deposition, ...)

Strategy Starting from a consolidate IMM lay-out, new flow-chart accessible to FBK technology has been defined.

gr1	anello di guardia (sotto il contatto)	20 µm
gr2	anello di guardia (sotto l'ossido)	50 µm
ov	overlap	40 µm
ox	ossido libero	100 µm

Work in progress on Simulations, Flow-Chart

Silicon Carbide detectors

Grazie per l'attenzione!

