Hadronic Interactions and Astroparticle Physics

Paolo Lipari, INFN Roma "Sapienza"

Terzo Incontro di Fisica Nucleare

Frascati 16th november 2016

Intimate (and "multiform") relationship

between

Particle Physics (hadronic interactions)

and

"High Energy Astrophysics" [multi messenger astrophysics]

1. Introduction

2. Dark Matter

3. Antimatter $(e^+ \text{ and } \overline{p})$ in Cosmic Rays. 4. Very High Energy Cosmic Rays

5. Outlook

104 years of Cosmic Rays

Discovery of Cosmic Rays Ballon flight of Viktor Hess (1912)

birth of

"High energy astrophysics"

and of

Particle Physics

Nobel prize (1936) divided between Viktor Hess and Carl Anderson (discovery of positron)

Cosmic Rays and Particle Physics

JULY-OCTOBER, 1939

REVIEWS OF MODERN PHYSICS

Extensive Cosmic-Ray Showers

PIERRE AUGER In collaboration with P. Ehrenfest, R. Maze, J. Daudin, Robley, A. Fréon Paris, France

Log[distance between particle detectors]

Three messengers are "inextricably" tied together [Cosmic Rays, Gamma Rays, High Energy Neutrinos can really be considered as three probes that study the same underlying physical phenomena]

Fundamental Mechanism: Acceleration of Charged Particles to Very High Energy ("non thermal processes") in astrophysical objects (or better "events").

Creation of Gamma Rays and Neutrinos via the interactions of these relativistic charged particles.

Non accelerator sources

Dark Matter (in form of WIMP's self annihilation or decay)

Super Massive Particles [Very High mass scales]

Production of high energy particles of all types $~\gamma~,~\nu~,~e^+~,~e^-~,~p~,~\ldots$

Gamma Astronomy has revealed a a very rich, fascinating landscape

- Many sources have been identified [GeV , TeV ranges]
- Several classes of objects [SNR, Pulsars, PWN, AGN, GRB, ...]

Probably different acceleration mechanisms.

Still developing an understanding many questions remain open

SN 1006

GRB 970228

Crab Nebula

Sources are transients

[with a variety of time scales from a small fraction of a second to thousands of years]

Associated to Compact Objects

Neutron stars, Black Holes (stellar and Supermassive)

FORMATION of Compact Objects (very large acceleration of very large masses)

Natural connection to Gravitational Waves

September 14th, 2015 at 09:50:45 UTC

GAMMA RAY BURSTS (GRB's)

Long GRB associated with SuperNova explosions

Images: A 1998 supernova (*SN 1998bw*, left) and the corresponding gamma-ray burst on April 25, 1998 (*GRB 980425*, right). Courtesy of Dr. Kulkarni.

Crashing neutron stars can make gamma-ray burst jets

Simulation begins

7.4 milliseconds

13.8 milliseconds

15.3 milliseconds

21.2 milliseconds

26.5 milliseconds

Credit: NASA/AEI/ZIB/M. Koppitz and L. Rezzolla

Gravitational Waves Studies Entering a new exciting era with LIGO/VIRGO

2. Dark Matter

- Dynamical Evidence
- The "WIMP" hypothesis
- Three Roads to explore the WIMP hypothesis

DARK MATTER

Dynamical Evidence for Dark Matter

- Clusters of Galaxies
 - The entire Universe

The Dark Matter is "non baryonic" an "exotic" substance

A field that is not contained in the Standard Model of Particle Physics [!]

Dark Energy 73% (Cosmological Constant)

Ordinary Matter 4% (of this only about 10% luminous)

Dark Matter 23% Neutrinos 0.1 2%

$$\begin{split} \Omega_{\rm b} &= 0.0458 \pm 0.0016 \\ \Omega_{\rm cold} &= 0.229 \pm 0.015 \\ \Omega_{\Lambda} &= 0.725 \pm 0.016 \\ \\ \Omega_{k} &= 1 - \Omega_{\rm total} = -\frac{c^{2}}{H_{0}^{2} R_{0}^{2}} \\ -0.0133 \leq \Omega_{k} \leq 0.0084 \\ |R_{0}| > 37 \; \rm{Gpc} \\ \\ \text{The Universe is FLAT} \end{split}$$

COMA Galaxy Cluster

Optical

Fritz Zwicky 1933 First argument for Dark Matter Virial theorem

X-ray [hot gas confined by deep gravitational well]

Spiral galaxy NGC 3198 overlaid with hydrogen column density [21 cm] [ApJ 295 (1905) 305

MILKY WAY DM Halo

The DARK MATTER is "Non Baryonic"

Nucleosynthesis

Structure Formation

BigBang Nucleosynthesis constraints

on ordinary ("baryonic") matter

Robert W. Wilson Arno.A. Penzias

Discovery of the 2.7 Kelvin Cosmic Microwave Background Radiation By Penzias and Wilson (1965), [Nobel 1978]

Flat Universe from CMBR Angular Fluctuations

GRAVITATIONAL INSTABILITY

Smooth

Structured

Distribution of Galaxies in the SKY (XMASS)

Max Tegmark

Univ. of Pennsylvania max@physics.upenn.edu TAUP 2003 September 5, 2003

- It (very likely) exists ("modified gravity" models strongly disfavored)
- Good estimate of the cosmological average (~23%)
- Reasonably good estimate of "local" density
- Most of it is non baryonic
- Most of it is "cold"

It cannot be explained by the Standard Model in Particle Physics !!

- It (very likely) exists ("modified gravity" models strongly disfavored)
- Good estimate of the cosmological average (~23%)
- Reasonably good estimate of "local" density
- Most of it is non baryonic
- Most of it is "cold"

- ... but we do NOT what it is made of
- It cannot be explained by the Standard Model in Particle Physics !!

Cold Dark Matter (Tate Gallery. London)

Artists and Dark Matter

Cornelia Parker

What is the Dark Matter ?

Possible theoretical ideas

Thermal Relic ("WIMP" hypothesis)

Axion

Super-massive particles

• • • • • • • • • •

WIMP = "Weakly Interacting Massive particle" Perhaps the most natural idea. Offers good possibility to be tested experimentally.

Early Hot Universe

Particles in Thermal equilibrium

$$a + b \leftrightarrow c + d$$

"COSMIC SOUP"

$$n(T) = \int d^3p \ \frac{dN}{d^3x \ d^3p}$$
$$\rho(T) = \int d^3p \ E(p) \ \frac{dN}{d^3x \ d^3p}$$

High Temperature

 $T \gg m_{\chi}$

g = number of spin degrees of freedom Number (mass) density of a particle in thermal equilibrium at temperature T

$$n_{\text{boson}}(T) = g \frac{\zeta(3)}{\pi^2} T^3$$
$$n_{\text{fermion}}(T) = g \frac{\zeta(3)}{\pi^2} T^3 \times \frac{3}{4}$$
$$\rho_{\text{boson}}(T) = g \frac{\pi^2}{30} T^4$$
$$\rho_{\text{fermion}}(T) = g \frac{\pi^2}{30} T^4 \times \frac{7}{8}$$

$$\Omega_j^0 \simeq 0.3 \ \left[\frac{3 \times 10^{-26} \ \mathrm{cm}^3 \, \mathrm{s}^{-1}}{\langle \sigma \, v \rangle} \right]$$

The "relic density" of a particle is determined by its annihilation cross section

(several complications are possible)

the WIMP's "miracle"

Unbelievable! It looks like they've both been killed by the same stone...

"Killing two birds with a single stone"

"Dark Matter Particle"

Direct observational puzzle

New particles are predicted in "beyond the Standard Model" theories, (in particular Supersymmetry) that have the DM particle properties.

Theoretical motivations (hierarchy problem)

Supersymmetry

Fermionic degrees of freedom

Bosonic degrees Of freedom

All "internal quantum numbers" (charge, color,...) must be identical

 $egin{array}{ccc} q & ilde{q} & ext{squark} \ e^{\pm} & ilde{e}^{\pm} & ext{selectron} \ g & ilde{g} & ext{gluino} \end{array}$

St	andard Model field	S	Super-symmetric extension		
fermions	quarks leptons neutrinos		Squarks Sleptons Sneutrinos Sneutrinos		
bosons	photon W Z gluons		photino Wino Zino gluinos New fermions spin 1/2		
2 Higgs	$\begin{array}{c} {\rm Higgs} \\ H & h \end{array}$		$\begin{array}{c c} \hline Higgsino \\ \widetilde{H} & \widetilde{h} \\ \hline \end{array}$		
Weak (~100 GeV) Mass scale	<pre>1 stable New Particle (R-parity conserved)</pre>	$\langle \rangle =$	$=c_1 \tilde{\gamma} angle + c_2 \tilde{z} angle + c_3 \tilde{H} angle + c_4 \tilde{h} angle$		

Three roads to study of the "WIMP hypothesis"

Efficient scattering now (Direct detection) "Three Roads to the Study of the "WIMP hypothesis"

Crossing symmetry

1st Road to DARK Matter

[in the form of "WIMPs"]

Production in accelerators

ATLAS detector at LHC

How do you see a Dark Matter (therefore invisible) particle ?

Lowest mass, Stable, (super-symmetric) Particle [LSP]

This particle interacts WEAKLY therefore (in practice always) it will traverse the detector invisibly.

Detection via 4-momentum conservation ["Missing energy and (transverse) momentum"]

Limits obtained at LHC (ICHEP 2016) [example]

Searches for SuperSymmetry at LHC

ATLAS Preliminary

ATLAS SUSY Searches* - 95% CL Lower Limits

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb	Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{array}{l} \mbox{MSUGRA/CMSSM} \\ \hline q \bar{q}, \bar{q} \rightarrow q \bar{\chi}_{1}^{D} \\ \hline q \bar{q}, \bar{q} \rightarrow q \bar{\chi}_{1}^{D} \\ \hline q \bar{q}, \bar{q} \rightarrow q \bar{\chi}_{1}^{D} \\ \hline s \bar{z}, \bar{z} \rightarrow q \bar{q} \bar{\chi}_{1}^{D} \\ \hline s \bar{z}, \bar{z} \rightarrow q \bar{q} \bar{\chi}_{1}^{D} \\ \hline s \bar{z}, \bar{z} \rightarrow q \bar{q} \bar{\chi}_{1}^{D} \\ \hline g \bar{z}, \bar{z} \rightarrow q \bar{q} (\mathcal{U}/\nu \bar{\chi}_{1}^{D}) \\ \hline g \bar{z}, \bar{z} \rightarrow q \bar{q} (\mathcal{U}/\nu \bar{\chi}_{1}^{D}) \\ \hline g \bar{d} M S B (\ell NLSP) \\ \hline G M (bino NLSP) \\ G G M (bino NLSP) \\ G G M (biggsino bino NLSP) \\ G G M (biggsino bins NLSP) \\ G G a vitino LSP \\ \hline g ravitino LSP \\ \end{array} $	0-3 $e, \mu/1-2 \tau$ 0 mono-jet 0 3 e, μ 2 e, μ (SS) 1-2 $\tau + 0.1 \ell$ 2 γ γ 2 e, μ (Z) 0	2-10 jets/3 & 2-6 jets 1-3 jots 2-6 jets 2-6 jets 2-6 jets 0-3 jets 0-2 jets 2 jets 2 jets 2 jets 2 jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 13.3 13.3 13.2 13.2 13.2 3.2 20.3 13.3 20.3 20.3 20.3	4.2 4.2 508 GeV 5 5 5 5 5 5 5 5 5 5 5 5 5	1.85 TeV m(q̄)=m(q̄) .35 TeV m(q̄)=0 GeV 1.83 TeV m(q̄) .1.7 TeV m(q̄) .1.8 TeV m(q̄) .2.0 TeV m(q̄) .37 TeV m(q̄) .38 TeV m(q̄) .39 GeV cr(NLSP) .30 m(q̄) .18 TeV .37 TeV m(q̄) .38 TeV m(q̄) .37 TeV m(q̄) .38 TeV m(q̄) .39 GeV cr(NLSP) .39 GeV m(q̄) .18 TeV <t< th=""><th>1507.05525 ATLAS-CONF-2016-078 1604.07773 ATLAS-CONF-2016-078 ATLAS-CONF-2016-078 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1607.05979 1808.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518</th></t<>	1507.05525 ATLAS-CONF-2016-078 1604.07773 ATLAS-CONF-2016-078 ATLAS-CONF-2016-078 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1607.05979 1808.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
3 rd gen. § med.	$\overline{g}\overline{g}, \overline{g} \rightarrow b\overline{b}\overline{\chi}_{1}^{0}$ $\overline{g}\overline{g}, \overline{g} \rightarrow t\overline{k}_{1}^{0}$ $\overline{g}\overline{g}, \overline{g} \rightarrow b\overline{t}\overline{\chi}_{1}^{0}$	0 0-1 e, µ 0-1 e, µ	3 b 3 b 3 b	Yes Yes Yes	14.8 14.8 20.1	2 2 2 1	1.89 TeV m(k ¹)=0 GeV 1.89 TeV m(k ¹)=0 GeV 37 TeV m(k ¹)<300 GeV	ATLAS-CONF-2016-052 ATLAS-CONF-2016-052 1407.0600
3rd gen. squarks direct production	$ \begin{array}{l} \bar{b}_{1}\bar{b}_{1}, \ \bar{b}_{1} \rightarrow b\bar{x}_{1}^{0} \\ \bar{b}_{1}\bar{b}_{1}, \ \bar{b}_{1} \rightarrow b\bar{x}_{1}^{0} \\ \bar{r}_{1}\bar{r}_{1}, \ \bar{r}_{1} \rightarrow c\bar{x}_{1}^{0} \\ \bar{r}_{1}\bar{r}_{1}, \ \bar{r}_{1} \rightarrow c\bar{x}_{1}^{0} \\ \bar{r}_{2}\bar{r}_{2}, \ \bar{r}_{2} \rightarrow \bar{r}_{1} + Z \\ \bar{r}_{2}\bar{r}_{2}, \ \bar{r}_{2} \rightarrow \bar{r}_{1} + h \end{array} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 0 - 2 \ e, \mu \\ 0 - 2 \ e, \mu \end{array} \\ \begin{array}{c} 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1 \ e, \mu \end{array}$	2 b 1 b 1-2 b 0-2 jets/1-2 l mono-jet 1 b 1 b 6 jets + 2 b	Yes Yes Yes Yes Yes Yes Yes	3.2 13.2 1.7/13.3 1.7/13.3 3.2 20.3 13.3 20.3	840 GeV Š1 325-885 GeV K7-170 GeV 200-720 GeV J1 90-198 GeV 205-850 GeV J2 205-850 GeV J3 90-323 GeV J1 150-600 GeV J2 290-700 GeV J3 320-620 GeV	$\begin{array}{l} m(\tilde{\mathcal{K}}_{1}^{0})\!<\!100~\text{GeV} \\ m(\tilde{\mathcal{K}}_{1}^{0})\!<\!150~\text{GeV}, m(\tilde{\mathcal{K}}_{1}^{0})\!=\!m(\tilde{\mathcal{K}}_{1}^{0})\!+\!100~\text{GeV} \\ m(\tilde{\mathcal{K}}_{1}^{0})\!=\!2m(\tilde{\mathcal{K}}_{1}^{0}), m(\tilde{\mathcal{K}}_{1}^{0})\!=\!55~\text{GeV} \\ m(\tilde{\mathcal{K}}_{1}^{0})\!=\!1~\text{GeV} \\ m(\tilde{\mathcal{K}}_{1}^{0})\!=\!15~\text{GeV} \\ m(\tilde{\mathcal{K}}_{1}^{0})\!=\!150~\text{GeV} \\ m(\tilde{\mathcal{K}}_{1}^{0})\!=\!30~\text{GeV} \\ m(\tilde{\mathcal{K}}_{1}^{0})\!=\!0~\text{GeV} \\ \end{array}$	1606.08772 ATLAS-CONF-2016-037 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2016-077 1604.07773 1403.5222 ATLAS-CONF-2016-038 1506.08616
direct	$ \begin{array}{l} \tilde{d}_{1,R}\tilde{d}_{1,R}, \tilde{\ell} \rightarrow \tilde{\ell} \tilde{\ell}_{1}^{0} \\ \tilde{\mathcal{K}}_{1}^{-} \tilde{\mathcal{K}}_{1}^{-}, \tilde{\mathcal{K}}_{1}^{-} \rightarrow \tilde{\ell} \nu(\ell \bar{\nu}) \\ \tilde{\mathcal{K}}_{1}^{+} \tilde{\mathcal{K}}_{1}^{-}, \tilde{\mathcal{K}}_{1}^{-} \rightarrow \tilde{\ell} \nu(\ell \bar{\nu}) \\ \tilde{\mathcal{K}}_{1}^{+} \tilde{\mathcal{K}}_{2}^{0} \rightarrow \tilde{\mathcal{K}}_{1}^{-} \tilde{\mathcal{K}}_{1}^{+} (\tilde{\nu}), \ell \tilde{\nu} \tilde{\ell}_{L}^{-} \ell(\tilde{\nu}) \\ \tilde{\mathcal{K}}_{1}^{+} \tilde{\mathcal{K}}_{2}^{0} \rightarrow \tilde{\mathcal{W}}_{1}^{+} \tilde{\mathcal{K}}_{1}^{+} \tilde{\mathcal{K}}_{1}^{0} \\ \tilde{\mathcal{K}}_{1}^{+} \tilde{\mathcal{K}}_{2}^{0} \rightarrow \tilde{\mathcal{W}}_{1}^{+} \tilde{\mathcal{K}}_{1}^{+} \tilde{\mathcal{K}}_{1}^{0} \\ \tilde{\mathcal{K}}_{1}^{+} \tilde{\mathcal{K}}_{2}^{0} \rightarrow \tilde{\mathcal{W}}_{1}^{+} \tilde{\mathcal{K}}_{1}^{+} \tilde{\mathcal{K}}_{1}^{0} \\ \tilde{\mathcal{K}}_{1}^{+} \tilde{\mathcal{K}}_{2}^{-} \rightarrow \tilde{\mathcal{W}}_{1}^{+} \tilde{\mathcal{K}}_{1}^{+} \tilde{\mathcal{K}}_{1}^{0} \\ \tilde{\mathcal{K}}_{1}^{+} \tilde{\mathcal{K}}_{2}^{-} \rightarrow \tilde{\mathcal{W}}_{1}^{+} \tilde{\mathcal{K}}_{1}^{+} \tilde{\mathcal{K}}_{1}^{0} \\ \tilde{\mathcal{K}}_{1}^{+} \tilde{\mathcal{K}}_{2}^{-} \rightarrow \tilde{\mathcal{W}}_{1}^{+} \tilde{\mathcal{K}}_{1}^{+} \tilde{\mathcal{K}}_{1}^{+}$	2 e,µ 2 e,µ 2 τ 3 e,µ 2-3 e,µ 2-3 e,µ 4 e,µ 1 e,µ + γ 2 γ	0 0 0-2 jets 0-2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	? 90-335 GeV \$	$\begin{split} m(\tilde{k}_1^{0}){=}0\text{GeV} \\ m(\tilde{k}_1^{0}){=}0\text{GeV}, m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{k}_1^{0}){+}m(\tilde{k}_1^{0})) \\ m(\tilde{k}_1^{0}){=}0.6eV, m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{k}_1^{0}){+}m(\tilde{k}_1^{0})) \\ m(\tilde{k}_1^{0}){=}m(\tilde{k}_2^{0}){+}m(\tilde{k}_1^{0}){=}0.65(m(\tilde{k}_1^{0}){+}m(\tilde{k}_1^{0})) \\ m(\tilde{k}_1^{0}){=}m(\tilde{k}_2^{0}){+}m(\tilde{k}_2^{0}){+}m(\tilde{k}_1^{0}){=}0, \tilde{\ell} \text{ decoupled} \\ m(\tilde{k}_1^{0}){+}m(\tilde{k}_2^{0}){+}m(\tilde{k}_1^{0}){=}0, \tilde{\ell} \text{ decoupled} \\ m(\tilde{k}_2^{0}){+}m(\tilde{k}_2^{0}){+}m(\tilde{k}_1^{0}){=}0, m(\tilde{k},\tilde{\nu}){=}0.5(m(\tilde{k}_2^{0}){+}m(\tilde{k}_2^{0})) \\ c\tau{<}1\text{mm} \\ c\tau{<}1\text{mm} \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05403 1507.05403
Long-lived particles	Direct $\tilde{x}_{1}^{*}\tilde{x}_{1}^{*}$ prod., long-lived \tilde{x}_{1}^{*} Direct $\tilde{x}_{1}^{*}\tilde{x}_{1}^{*}$ prod., long-lived \tilde{x}_{1}^{*} Stable, stopped \tilde{x} R-hadron Metastable \tilde{x} R-hadron GMSB, stable $\tau, \tilde{x}_{1}^{0} \rightarrow \tau(\tilde{x}, \tilde{\mu}) + \tau(\tilde{x}, \tilde{\mu})$ GMSB, $\tilde{x}_{1}^{0} \rightarrow \phi \tilde{x}_{1}^{*} \phi \tilde{x}_{1}^{*} \rightarrow \tau(\tilde{x}, \tilde{\mu}) + \tau(\tilde{x}, \tilde{\mu})$ GMSB, $\tilde{x}_{1}^{0} \rightarrow e w/e \mu v/\mu w$ GGM $\tilde{x}_{2}^{*}, \tilde{x}_{1}^{0} \rightarrow 2G$	Disapp. trk dE/dx trk 0 trk dE/dx trk dE/dx trk	1 jet 1-5 jets - - - - 15	Yes Yes Yes Yes Yes	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	11 270 GeV \$1 495 GeV \$2 850 GeV \$2 537 GeV \$2 440 GeV \$2 1.0 TeV \$2 1.0 TeV	$\begin{array}{c} \mathfrak{m}(\tilde{k}_{1}^{1}) - \mathfrak{m}(\tilde{k}_{1}^{0}) - 160 \ \mbox{MeV}, \tau(\tilde{k}_{1}^{1}) = 0.2 \ \mbox{ns}\\ \mathfrak{m}(\tilde{k}_{1}^{1}) - \mathfrak{m}(\tilde{k}_{1}^{0}) - 160 \ \mbox{MeV}, \tau(\tilde{k}_{1}^{1}) < 15 \ \mbox{ns}\\ \mathfrak{m}(\tilde{k}_{1}^{0}) = 100 \ \mbox{GeV}, 10 \ \mbox{ps} < \tau(\tilde{k}) < 1000 \ \mbox{s} \\ 1.57 \ \mbox{TeV} \\ \mathfrak{m}(\tilde{k}_{1}^{0}) = 100 \ \mbox{GeV}, \tau > 10 \ \mbox{ns}\\ \mathfrak{m}(\tilde{k}_{1}^{0}) = 100 \ \mbox{GeV}, \tau > 10 \ \mbox{ns}\\ \mathfrak{m}(\tilde{k}_{1}^{0}) = 100 \ \mbox{GeV}, \tau > 10 \ \mbox{ns}\\ \mathfrak{m}(\tilde{k}_{1}^{0}) = 30 \ \mbox{GeV}, \tau > 10 \ \mbox{ns}\\ \mathfrak{m}(\tilde{k}_{1}^{0}) < 3 \ \mbox{ns}, SPS8 \ \mbox{model}\\ \mathfrak{m}(\tilde{k}_{1}^{0}) < 3 \ \mbox{ns}, M(\tilde{k}) = 1.3 \ \mbox{TeV}\\ \mathfrak{h} < \epsilon \tau(\tilde{k}_{1}^{0}) < 480 \ \mbox{nm}, \ \mbox{m}(\tilde{k}) = 1.1 \ \mbox{TeV} \end{array}$	1310.3675 1506.05332 1310.8584 1606.05129 1804.04520 1411.8795 1409.5542 1504.05162
APV	$ \begin{array}{l} LFV pp \rightarrow \bar{v}_{\tau} + X, \bar{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear RPV CMSSM \\ \tilde{\mathcal{X}}_{1}^{+}\tilde{\mathcal{X}}_{1}^{-}, \tilde{\mathcal{X}}_{1}^{+} \rightarrow \mathcal{W}_{2}^{+0}, \tilde{\mathcal{X}}_{1}^{0} \rightarrow eev, e\muv, \mu \\ \tilde{\mathcal{X}}_{1}^{+}\tilde{\mathcal{X}}_{1}^{-}, \tilde{\mathcal{X}}_{1}^{+} \rightarrow \mathcal{W}_{2}^{0}, \tilde{\mathcal{X}}_{1}^{0} \rightarrow \tau\tauv_{e}, e\tauv, \\ \tilde{\mathcal{B}}^{+}\tilde{\mathcal{S}}_{\tau} \rightarrow qqg \\ \tilde{\mathcal{B}}_{\tau}^{+}\tilde{\mathcal{S}}_{\tau} \rightarrow qqg \\ \tilde{\mathcal{B}}_{\tau}^{+}\tilde{\mathcal{S}}_{\tau} \rightarrow qqg \\ \tilde{\mathcal{B}}_{\tau}^{+}\tilde{\mathcal{S}}_{\tau} \rightarrow dqg \\ \tilde{\mathcal{B}}_{\tau}^{+}\tilde{\mathcal{B}}_{\tau} \rightarrow ds \\ \tilde{r}_{1}\tilde{r}_{1}, \tilde{r}_{1} \rightarrow bs \\ \tilde{r}_{1}\tilde{r}_{1}, \tilde{r}_{1} \rightarrow b\delta \end{array} $	$\begin{array}{c} e\mu, e\tau, \mu\tau\\ 2 e, \mu (SS)\\ \mu\nu & 4 e, \mu\\ 3 e, \mu + \tau\\ 0 & 4\\ 2 e, \mu (SS)\\ 0\\ 2 e, \mu\end{array}$	-5 large- <i>R</i> je -5 large- <i>R</i> je 0-3 b 2 jets + 2 b 2 b	Ves Ves Ves ts - ts - Yes -	3.2 20.3 13.3 20.3 14.8 14.8 13.2 15.4 20.3	ν, φ. ε γ ² γ ² 450 GeV ε 1.08 Te ε ε 1.08 Te ε 1.14 T 1.08 Te ε 1.08 Te ε 1.14 TeV 450 GeV 1.08 Te ε 1.04 Te 0.4-1.0 TeV 0.4-1.0 TeV	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1807.08079 1404.2500 ATLAS-CONF-2016-075 1405.5098 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-037 ATLAS-CONF-2016-02, ATLAS-CONF-2016-037 ATLAS-CONF-2015-015
ther	Scalar charm, $\tilde{c} \rightarrow \delta_1^0$	0	20	Yes	20.3	č 510 GeV	m(𝔅 [®])<200 GeV	1501.01325

2nd Road to DARK Matter

[in the form of "WIMPs"]

"Direct" Search for Dark Matter

Elastic scattering

Predicted *velocity distribution* of DM particles in the "Halo Frame". Approximately Maxwellian form $\langle v_{\rm wimp} \rangle \simeq 250 \text{ km/sec}$

 $v_{\rm rotation}^{\odot} \simeq 200 \ {\rm Km/sec}$

$$ec{w}_{\oplus}(t) = ec{w}_{\odot} + ec{v}_{
m orbit}(t)$$

 $w_{\oplus}(t) \simeq w_{\odot} + \sin \gamma \, v_{\text{orbit}} \, \cos[\omega(t - t_0)]$

"Halo rest frame"

Velocity of Earth in the Halo rest frame

[Co-rotation ?]

Velocity distribution of DM particles in the Earth Frame

 $E_{\rm recoil}$ (KeV)

80

$DAMA\text{-}LIBRA \hspace{0.1in} (\texttt{Gran Sasso underground Laboratory})$

250 Kg NaI scintillator.

Observation of sinusoidal time-modulation of the Energy Deposition Rate

(controversial) claim of evidence of detection of Galactic Dark Matter

 $1.17 \text{ ton} \times \text{yr}$

2-6 keV

Fundamental discovery ?!

Unknown background (with coincident phase)?

e^{-}/γ : electronic recoil

n/WIMPs: nuclear recoil

CRESST detector (Gran Sasso): Phonons + Light

The XENON two-phase TPC

3rd Road to DARK Matter

[in the form of "WIMPs"]

Indirect searches in Cosmic Rays

In the "WIMP paradigm" Dark Matter is NOT really dark

Point in the Milky Way halo.

$$n_{\chi}(\vec{x}) = \frac{\rho_{\chi}(\vec{x})}{m_{\chi}}$$

Number density of Dark Matter particles

 $\frac{dN_{\chi\chi\to X}}{d^3x\,dt} = \frac{1}{2} n_{\chi}^2(\vec{x}) \ \langle \sigma v \rangle$

Number of annihilations per unit time and unit volume

$$\frac{dL_{\rm DM}}{d^3x}(\vec{x}) = \frac{\rho^2(\vec{x})}{m_{\chi}} \langle \sigma v \rangle$$

Luminosity per unit volume What is the energy output of the Milky Way in DM annihilations?

Power injection from Dark Matter annihilation $L(\vec{x}) = \frac{\rho(\vec{x})^2}{{M_\chi}^2} \,\left<\sigma \, v\right> \, M_\chi$

Injection of energy because of DM annihilation

$$L_{\rm DM} \simeq 3 \times 10^{37} \, {\rm erg \ s^{-1}} \, \left[\frac{\langle \sigma v \rangle}{3 \times 10^{-26} \, ({\rm cm^3 s})^{-1}} \right] \, \left[\frac{100 \, {\rm GeV}}{m_{\chi}} \right]$$

For comparison, for Cosmic Ray protons

$$L_p \simeq 10^{41} \; \frac{\mathrm{erg}}{\mathrm{s}}$$

What is the final state of DM annihilations ?

... well we do not know, we have to build a model (for example supersymmetry).

But it is plausible that the Dark Matter particle will (or could) produce all particles (and anti-particles) that we know.

Most promising for detection:

$$\chi + \chi \rightarrow \gamma$$
 e^+ \overline{p} ν_{α}
photons Charged (anti)particles Neutrinos

Trade-off between signal strength versus astrophysical background

Charged particles: positrons and anti-protons

10 -3 0.04 0.03 0.02 10 -4 Normal spectra 0.01 e+/(e-+e+) Normal spectra for 0 anti-proton/proton 100 Energy (GeV) 10 -5 10 100 1 Kinetic Energy (GeV)

Trapped by the Galactic magnetic field

Extra contribution to the cosmic ray fluxes

3. Antimatter $(e^+ \text{ and } \overline{p})$ in Cosmic Rays.

- \bullet Secondary production of e^+ and \overline{p}
- Formation of the CR spectra
- Production of anti-deuterium.
- (Nuclear Fragmentation Cross sections)
- (γ ray production in CR sources)

Formation of the Cosmic Ray Spectra

 4π

Cosmic Ray Density at the Sun position

"Release"

in Interstellar Medium

Propagation from source to Sun

[Injection]

Extragalactic contribution

MILKY WAY

LARGE MAGELLANIC CLOUD

SMALL MAGELLANIC CLOUD

"Bubble" of cosmic rays generated in the Milky Way and contained by the Galaxy magnetic field

Space extension and properties of this "CR bubble" remain very uncertain

Formation of the (proton) Cosmic Ray Spectrum

 $N_i(E) = Q_i(E) \times T_i(E)$

Different particles

$$p$$
, nuclei (Z, A)
 \overline{p} , e^- , e^+

Injection of cosmic rays Containment time

$$N_j(E) = \int d^3x \ n_j(E, \vec{x})$$

$$\phi_j(E) = \frac{c}{4\pi} n_j(E)$$

Primary particles: (protons, electrons, Helium nuclei,)

Accelerated in Astrophysical Sources

"Release"

Injection in the acceleration process

 \otimes

Acceleration

 \otimes

Source Ejection (escape from accelerator) Secondary particles: positrons, antiprotons [in the "conventional picture" : no DM, no antimatter accelerators)]

Rare Nuclei (Li, Be, B,)

"born relativistic"

"Release" = Creation in the interaction of a higher energy particle

"Conventional mechanism" for the production of positrons and antiprotons:

Creation of secondaries in the inelastic hadronic interactions of cosmic rays in the interstellar medium

Dominant source of positrons:

$$\pi^+ \to \mu^+ + \nu_\mu \to [e^+ \ \nu_e \ \overline{\nu}_\mu] + \nu_\mu$$

Additional sources [kaon decay]

$$K^{+} \rightarrow e^{+} + \nu_{e} + \pi^{\circ}$$

$$K^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow [e^{+} \nu_{e} \overline{\nu}_{\mu}] + \nu_{\mu}$$

$$K^{+} \rightarrow \mu^{+} + \nu_{\mu} + \pi^{\circ} \rightarrow [e^{+} \nu_{e} \overline{\nu}_{\mu}] + \nu_{\mu} + \pi^{\circ}$$

$$K^{+} \rightarrow \pi^{+} + \pi^{\circ} \rightarrow \nu_{\mu} \rightarrow e^{+}$$

$$K^{+} \rightarrow \pi^{+} + \pi^{\circ} + \pi^{\circ} \rightarrow e^{+} + \dots$$

$$K^{+} \rightarrow \pi^{+} + \pi^{+} + \pi^{-} \rightarrow e^{+} + \dots$$

$$K_L \to \pi^- + e^+ + \nu_e$$

$$K_L \to \pi^- + \mu^+ + \nu_\mu \to \pi^- + [e^+ \nu_e \overline{\nu}_\mu] + \nu_\mu$$

$$K_L \to \pi^+ + \pi^\circ + \pi^\circ \to e^+ + \dots$$

Calculation of the "Local injection" of secondaries by the "conventional mechanism"

$$q_{\overline{p}}^{\text{loc}}(E) = \phi_p(E) \otimes n_{\text{ism}}(\vec{x}_{\odot}) \otimes \sigma_{\text{hadronic}}[pp \to \overline{p} + \ldots]$$

$$q_{e^+}^{\rm loc}(E) = \phi_p(E) \otimes n_{\rm ism}(\vec{x}_{\odot}) \otimes \sigma_{\rm hadronic}[pp \to e^+ + \ldots]$$

- Step 1: Measure the spectra of CR near the Earth.
- Step 2: Correct for Solar Modulation effects to obtain the spectra in interstellar space
- Step 4: Model the interaction to compute injection spectra of positrons + anti-protons.

$$q_j^{\text{loc}}(E) = n_{\text{ism}} (\vec{x}_{\odot}) f_p \int dE_0 n_p^{\text{loc}}(E_0) (\beta c) \sigma_{pp}(E_0) \frac{dN_{pp \to j}}{dE}(E, E_0)$$

 $+(p + He) + (He + p) + (He + He) + \dots$

Nucleon Fluxes

Pamela, AMS02, CREAM HEA0 (for nuclei)

Particle production in hadronic collisions

$$pp \to \pi^+, K^+, \overline{p}, \ldots$$

 $E_0 = 10^4 \text{ GeV}$

Example of a Montecarlo calculation with Pythia

Pythia Montecarlo

Note: approximate "scaling" of cross section

Power Law for projectiles

Power law for secondaries

Response function for anti-proton production. [Primary particle energy that contributes to the flux at energy E]

$$q_{j}^{(\text{ism})}(E,\vec{x},t) = \sum_{A} \int dE_{0} \ n_{A}(E_{0},\vec{x},t) \ n_{\text{ism}}(\vec{x}) \beta c \, \frac{d\sigma_{A\to j}}{dE}(E,E_{0})$$

 E_0/E

Production of different particles

Data on Positrons

Data on Positrons

AMS p/p results and modeling

AMS p/p results and modeling

Giesen, Boudaud, Génolini, Poulin, Cirelli, Salati, Serpico 1504.04276 New precision measurements (by AMS02) of anti-matter Cosmic Rays.

Ľ

New precision measurements (by AMS02) of anti-matter Cosmic Rays.

 $\frac{\phi_{e+}(E)}{\phi_{\overline{p}}(E)}\Big|_{E\in[30,400]\ \text{GeV}} \simeq (2.04\pm0.04) \times \left(\frac{E}{50\ \text{GeV}}\right)^{0.015\pm0.045}$

Injection

Observed Fluxes

"Striking" similarity

$$p + p \to p + p + p + \overline{p}$$

$$E_{i,\text{threshold}} = 7 \ m_p$$

$$E_{f,\text{threshold}} = 2 m_p$$

Injection of positrons and antiprotons

At *high energy* approximately constant ratio (consequence of scaling)

$$\frac{q_{\overline{p}}}{q_{e^+}} \simeq 1.80 \pm 0.5$$

 $\left. \frac{e + (E)}{\phi_{\overline{p}}(E)} \right|_{E \in [30,350] \text{ GeV}} \simeq 2.04 \pm 0.04$

Low energy: kinematical suppression of antiproton production Production of anti-deuteron and anti-helium in Dark Matter annihilation

Background suppressed for kinematical reasons

$$p + p \rightarrow p + p + A + A$$
$$2m_p^2 + 2m_p E \gtrsim [2(A+1)]^2 m_p^2$$

$$E_p^{\text{th}}(\overline{A}) = [2 (A+1)^2 - 1] m_p$$
$$E(\overline{A}) = (A^2 + A) m_p$$

$4\overline{He}$ Event in STAR detector at RHIC (200 GeV Gold – Gold collisions)

100 cm

The SuperNova "Paradigm" for CR acceleration

Energetics, Dynamic<u>s</u>

CAS A (1667)

SNR

"Fireball" of an Supernova explosion

$$\begin{split} L_{\rm SN \ kinetic}^{\rm Milky \ Way} &\simeq E_{\rm SN}^{\rm Kinetic} \ f_{\rm SN} \\ L_{\rm SN \ kinetic}^{\rm Milky \ Way} &\simeq \left[1.6 \times 10^{51} \ {\rm erg} \right] \quad \left[\frac{3}{\rm century} \right] \\ M &= 5 \ M_{\odot} \\ v &\simeq 5000 \ {\rm Km/s} \\ L_{\rm SN \ kinetic}^{\rm Milky \ Way} &\simeq 1.5 \times 10^{42} \ \frac{{\rm erg}}{\rm s} \end{split}$$

Power Provided by SN is sufficient with a conversion efficiency of 15-20 % in relativistic particles

Reconstruction of the Proton population Inside the two SuperNova shells

Nuclear Fragmentation (collisions with the Inter Stellar Medium)

Column density

$$X(E) = \langle \rho \rangle \ T(E)$$

Escape faster at higher E

 $X(E) \propto E^{-\delta}$

 $\delta\simeq 0.4\div 0.6$

 $\frac{\langle \rho \rangle}{\simeq} \simeq 0.2 \ \mathrm{cm}^{-3}$ $m_{\mathbf{p}}$

(extended halo)

$$T\simeq 10~{
m Myr}$$

4. Very High Energy Cosmic Rays

- Extensive Air Showers
- Longitudinal Development
- Muons and Electromagnetic components

Cosmic Ray Energy Spectrum

Great extension in energy

[rapidly decreasing flux]

"Direct"

"Indirect" [Shower properties] observations

Detection

Spectrum of high energy Cosmic Rays "All particle Spectrum"

 $\phi(E) \times E^{2.5}$

All particle spectrum

$\phi(E) \times E^{2.5}$

All particle spectrum

Proton laboratory energy

 $E_0 \simeq 3 \times 10^{15} \text{ eV}$

Nucleon-nucleon c.m. energy

$$\sqrt{s} \simeq 2.37 \text{ TeV}$$

 $E_0 \simeq 10^{17} \text{ eV}$

 $\sqrt{s} \simeq 13.7 \text{ TeV}$

 $E_0 \simeq 10^{18} \text{ eV}$

 $\sqrt{s} \simeq 43.3 \text{ TeV}$

 $E_0 \simeq 10^{19} \text{ eV}$

 $\sqrt{s} \simeq 137 \text{ TeV}$

 $E_0 \simeq 10^{20} \text{ eV}$

 $\sqrt{s} \simeq 433 \text{ TeV}$

Kascade-Grande results

Kascade-Grande results

Interpretation of the Ankle as the "DIP"

 $p + \gamma_{\rm cmbr} \rightarrow p + e^+ e^-$

Very important constraints for the sources E (GeV)

the Source

- the Shower

[The estimate of the Energy and Mass of the shower requires the detailed modeling of shower development]

the Data

Observations of Cosmic Rays at Very High energy (Extensive Air Showers)

Two techniques:

1. "Surface Detector"

[A single layer of the shower] Measure the particles that reach the ground, separating if possible the difference components [Muon component + electromagnetic component]

2. Fluorescence Light Telescopes Measure the Longitudinal development of an Air shower

PHYSICAL REVIEW LETTERS

~60 years of UHECR

EXTREMELY ENERGETIC COSMIC-RAY EVENT*

John Linsley, Livio Scarsi,[†] and Bruno Rossi Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received April 12, 1961)

Energy

Hadronic interaction Modeling

it follows on any reasonable shower model that the energy of the primary particle was about 10^{19} ev. Taking the usual estimate 3×10^{-6} gauss for the galactic magnetic field, one finds the radius of curvature of the path of a proton of such energy to be about 10^4 light years. Since, according to current estimates, the radius of the galactic halo is only about five times this value, while the thickness of the galactic disk is about five or ten times smaller, it seems certain that the primary particle acquired its energy outside our galaxy.

An important question is whether the primary particle was a proton or a heavier nucleus.

AUGER detector in ARGENTINA

A STATE OF THE REAL PROPERTY O

10

-

TRACK BAR

The Pierre Auger Observatory

Argentina, Mendoza, Malargue 1.4 km altitude, 870 g/cm²

Argentina
Australia
Bolivia [*]
Brazil
Czech Republic
France
Germany
Italy

Mexico Netherlands Poland Slovenia Spain United Kingdom USA Vietnam'

1.5 km spacing, **3000 km**², 4 x 6 fluorescence telescopes

Auger – Surface-Detector

ID 762238

Timing of tank-signals give shower direction

VEM = Vertical-Equivalent-Muon

How can one estimate the energy ?

The Fly's Eye Detection concept

Artists View of Hybrid Set-Up

The Fly's Eye Detection concept

Fluorescence light emitted isotropically by excited Nitrogen molecules

Yield ~ 4 photons/meter 300-400 nm

Original Fly's Eye detector (1981 - 1993)

The Auger 'hybrid' detector

Calibration of the energy measurement of the Surface detector

with fluorescence light observations

Shape of the Longitudinal development depends on the particle mass

[and on the modeling of the shower development i.e. the description of Hadronic Interactions]

One Montecarlo Model: [Sibyll 2.1]

Measurements of

 $\langle \log A \rangle$

Measurements of Composition evolution.

Average of \mathbf{X}_{\max}

Auger composition study :

Average position of shower Maximum

Dispersion of shower Maximum

ICRC 2015

Model dependence QGSJetII-04 [description of Shower development]

 $\sigma^2 \left[\ln A \right]$

AUGER, PRELIMINARY

50% p -50% Fe

100% A

20.0

QGSJetII-04 (Variance of ln A)

Small dispersion: small range of A contributing to the CR population

18.5

 $\log_{10}(\mathbf{E}/\mathbf{eV})$

19.0

19.5

17.5

18.0

Possible Interpretation (Auger at ICRC-2015)

- 1. Very hard spectra
- 2. Cutoff is the maximum energy of acceleration in the sources

 $E_{\max}(Z) = Z \ E_p$

Auger Collaboration

PRL 117, 192001 (2016)

week ending 4 NOVEMBER 2016

Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory

Predict the Surface detector response from the measurement of the longitudinal development of the shower Data systematically higher than the Montecarlo prediction. [MC showers contain too few muons]

Study of Composition with muons (inclined showers)

Study of Composition with muons (inclined showers)

Planned upgrade of Auger

Scintillator Detector

Combine: Tank Scintillator

to separate muon / e.m. components

Shower Components at Ground Level:

Electromagnetic Component

Muon Component

(Invisible) Neutrino component

Hadronic component [small and close to the shower axis]

 N_{μ} versus N_{e}

Data Interpretation

Kascade Grande "ankle" in the light component.

The IceCube Neutrino Observatory

New preliminary results on CR spectrum and composition

Cosmic ray physics with the IceCube Neutrino Observatory

Coincident analysis:

- IceTop stations detect the electromagnetic component (and low-energy muons): sensitive to the energy of the shower.
- High-energy muon bundles travel down to the IceCube detector:

- Minimal muon energy: $\sim 275 \text{ GeV}.$
- Multiplicity: 1 1000s.
- Created high in the atmosphere.
- Typical radius: $\sim 20-50$ m
- Ionization + radiative, stochastic energy loss.

IceTop

IceTop is at an altitude of \sim 2835 m \approx 692 g/cm²

Air shower reconstruction with IceTop

Lateral distribution function (LDF):

$$S(r) = S_{125} \cdot \left(\frac{r}{125 \text{ m}}\right)^{-\beta - \kappa \log\left(\frac{r}{125 \text{ m}}\right)}$$

Time residuals:

$$\Delta t(r) = ar^2 + b\left(\exp\left(-\frac{r^2}{2\sigma^2}\right) - 1\right)$$

 \rightarrow x, y, z, θ , ϕ , β , S₁₂₅ (signal at 125 m from core)

Results: Individual energy spectra

Systematics: Individual energy spectra, QGSJET

Results: Individual energy spectra

Results is in sharp contrast with the studies of fluorescence detectors.

Experimental problem ? Model incorrect ?

5. Outlook

• Experimental Studies LHC and lower energy

• Theory

Quantum Chromo Dynamics

Hadronic Interactions

Composite (complex) Objects Multiple interaction structure

Multiple Parton Interactions (in the same collision) is the essential element in the modeling

Parton Distribution Functions

$$f_j(x) \propto \frac{1}{x^{1+\delta}}$$

1

Rapid growth for $x \rightarrow 0$

$\hat{s} = s \, x_1 \, x_2$ $Q^2 \le \frac{\hat{s}}{2}$

(c.m. energy)² of parton-parton system

Interacting Partons

Increasing the c.m. Energy:

More parton-parton Interactions

pp cross section grows Higher multiplicity. More complex event. Softer energy spectra.

LHCf Experiment

LHCf: very forward photon production

Arm 2

LHCF data

Pseudo-Rapidity versus angle:

Very small angle production:

 θ (degrees)

LHCf \sqrt{s} =7TeV Gamma-ray like 8.81 < η < 8.99, $\Delta \phi$ = 20°

LHCf \sqrt{s} =7TeV Gamma-ray like $\eta > 10.94, \Delta \phi = 360^{\circ}$

$$\left[\frac{dN_{\gamma}}{dE_{\gamma}}(E_{\gamma})\right]_{8.81 \le \eta \le 8.99} = \frac{dN_{\gamma}}{dE_{\gamma}}(E_{\gamma}) \times \frac{dN_{\gamma}[8.81 \le \eta \le 8.99]}{dN_{\gamma}[\text{all }\eta]}$$

$$\left[\frac{dN_{\gamma}}{dE_{\gamma}}(E_{\gamma})\right]_{\eta>10.94} = \frac{dN_{\gamma}}{dE_{\gamma}}(E_{\gamma}) \times \frac{dN_{\gamma}[\eta>10.94]}{dN_{\gamma}[\text{all }\eta]}$$

E (GeV)

What are the most significant measurements (for cosmic ray studies) to be performed at LHC ?

- 0. c.m. Energy extension (...obvious)
- 1. Observed **Phase Space** extension (very difficult .. but in my view also very important)
- 2. Better **diffraction cross section** determination.
- Program of proton/light-nucleus observations
 3a. Program of nucleus/light-nucleus

Is a p-light nucleus of interest for the ALICE/Heavy Ions community at CERN ?

.... well of course the most fascinating science is in Lead-Lead collisions. This is where New behaviours (Quark-Gluon-Plasma...)

But (it seems to me) that it is possible to construct a robust argument that to develop a full understanding of "normal behavior" In nucleus-nucleus collisions, a more full span of Phase Space is very important The interest of the Cosmic Ray community in the continuation (and development !) of The "forward Physics", (Full Phase Space) Programs at LHC is VERY STRONG !

A full understanding of the Multi-Parton-Interaction structure of inelastic collisions *requires* a coverage of the entire phase space including the Very-forward – very/backward Fragmentation region.

So significant "intrinsic" (Particle Physics) interest in these programs

More in general:

Uncertainties on soft hadronic interactions remain a significant source of systematic uncertainties for many different studies on a broad energy range

[From very low energy: $pp \rightarrow p p + few pions$] Study of acceleration in SN remnants Production of neutral pions (that decay into gammas)

[Up to sqrt[s] = 430 TeV

Bridging the Gap

between

Soft and Hard Hadronic Interactions

Problem of CONFINEMENT

SOFT QCD studies

Have NOT only a simple "engineering" interest as a instrument to reconstruct the primary particle mass and energy in a shower.

They confront a very significant scientific open problem for the Standard Model

(In my view) they deserve a strong, broad Experimental *and theoretical* program.

PARTICLE PHYSICS

COSMIC RAYS ASTROPHYSICS

With UHECR one studies at the same time

"Gigantic Astrophysical Beasts" Millions of light years away Length scale 10^{+24} cm

The interconnection between

Particle Physics

and

Cosmic Ray science

[High Energy, multi-messenger-Astrophysics]

has a very long past-history

... and a very promising future.