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OUTLINE

? Motivation
I Low-energy regime: supernova neutrinos
I High-energy regime: oscillation signal of accelerator-based

experiment

? The electroweak nuclear response
I Low-energy regime: mean field dynamics, short- and long-range

correlations
I High-energy regime: the impulse approximation. Single particle

motion in interacting many-body systems

? Summary & Outlook
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SUPERNOVA NEUTRINOS

? Neutrino diffuse out of
dense newly born
neutron stars, carrying
away ∼ 1053 erg

Supernova Neutrinos
1500 km

3X107 km

10 km

Core collapse
tcollapse ~100 ms

Shock wave
Eshock~1051ergs

100 km

carry away  
~ 3 x 1053 ergs 

• The time structure of the neutrino signal depends on how 
heat is transported in the neutron star core (1013-1015 g/cm3 ). 


• The spectrum is set by scattering in a hot (T=5-10 MeV) and 
not so dense (1011-1013 g/cm3 ) neutrino-sphere. 

neutrinos diffuse 
out of the dense 
newly born 
neutron star

Quasi-static  
~ 1 s  

Text

? The time structure of the neutrino signal depends on heat
transport in the neutron star core, the density of which is
nB ∼ 1013 − 1015 g cm−3

? The spectrum is determined by scattering in the hot outer region
called neutrino-sphere, with typical temperature and density
T ∼ 5− 10 MeV and nB ∼ 1011 − 1013 g cm−3

? Energy scale Eν <∼ 10 MeV
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NEUTRINO OSCILLATIONS

? Neutrinos produced in weak interaction processes, e.g. β-decay,
are not in mass-eigenstates⇒ a neutrino created with a specific
flavor (νe, νµ or ντ ) can be detected at a later time with different
flavor

? Probability of appearance of a new flavor after travelling a
distance L (consider two flavors, for simplicity)

Pα→β = sin2 2θ sin2

(
∆m2L

4Eν

)

∆m2 = m2
ν1 −m2

ν2

Observable'Oscilla9on'Parameters'

Elba,'June'26,'2014'ElectronNNucleus'ScaPering'XIII' 4'

? The energy scale of long-baseline experiments (L ∼ few 100s km)
is Eν ∼ few 100s MeV to few GeV
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NEUTRINO INTERACTIONS ARE WEAK

. Neutrino-nucleon
scattering

3.2 Decomposition of the Cross Section

• Non-resonant background / Deep inelastic scattering (DIS):

W, Z

N

ν

X

l, ν

CC: νN → lX (3.37)

NC: νN → νX (3.38)

ν stands here for every kind of neutrino flavor as well as for its antiparticle. The term
”quasielastic” refers to the fact that the neutrino changes its identity to a charged lepton. If
the outgoing lepton is still a neutrino, the reaction is denoted as ”elastic”. The term ”deep
inelastic” refers to the kinematical regime where both Q2 and the mass of the hadronic
final state are large compared to typical hadron masses.

Having those three basic processes at hand we can describe all relevant physical reac-
tions. The cross section is then a sum of all single contribution, namely the production of
nucleons, of pions, etas and kaons, etc:

σCC,NC = σ(N)︸ ︷︷ ︸
mainly from QE

+ σ(π)︸︷︷︸
mainly from RES

+ σ(η) + σ(K)︸ ︷︷ ︸
from RES, DIS

+ . . . (3.39)

In this thesis we are mostly interested in energies in the resonance region, i. e. neutrino
energies up to about 2 GeV. This will mainly probe the first two parts of the above
equation. The most important processes at these energies are quasielastic scattering
and resonance production (see Fig. 3.2). The resonance production, however, is domi-
nated by the ∆(1232) (cf. chapter 6) which subsequently decays into a pion nucleon pair
(cf. Eq. (3.39)). Therefore, the next two chapters will be devoted to the calculation of
quasielastic scattering and of ∆ production. In chapter 6 we shall discuss the remaining
contributions needed for a full description of neutrino nucleon scattering.
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. Total cross section of the process

νµ + n→ µ− + p
4 (Quasi)Elastic Scattering
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Figure 4.7: Total cross section for νµn → µ−p.
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Figure 4.8: Total cross section for νln → l−p for different neutrino flavors.
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σνN ∼ 10−38 cm2 , σνN/σeN ∼ 10−6
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DETECTING NEUTRINOS REQUIRES BIG DETECTORS

. The SuperKamiokande detector, in
Japan, is filled with 12.5 million
gallon of ultra-clean water

. The MiniBooNE detector,at FNAL, is
filled with 800 tons of mineral oil

. The detected signal results from
neutrino interactions with Oxygen
and Carbon nuclei

. A quantitative understanding of the
their response to neutrino
interactions is required for the
interpretation of the measured cross
sections

5 / 25



NEUTRINO-NUCLEON INTERACTIONS

? Neutrino interactions are mediated by the gauge bosons W± and
Z0, whose masses are in the range ≈ 80− 90 GeV

? In all processes to be discussed in this talk the momentum
transfer q is such that q2 << M2

W,Z ∼ 80− 90 GeV⇒ Fermi
theory of weak interaction works just fine

W,Z0

LF =
G√

2
JNµJ`

µ

J`
µ =

{
ū`−γ

µ(1− γ5)uν (CC)
ūν′γ

µ(1− γ5)uν (NC)

? The nucleon current can be cast in the non relativistic limit

JNµ =

{
ūpγµ(1− gAγ5)un → χ†sp(g0

µ + gAg
µ
i σi)χsn (CC)

ūn′γµ(1− cAγ5)un → χ†s′n(g0
µ + cAg

µ
i σi)χsn (NC)
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NEUTRINO-NUCLEON CROSS SECTION

? x-section of the charged-current process ν` + n→ `− +X

dσ ∝ LλµWλµ

. Lλµ is determined by the lepton kinematical variables (more on
this later)

. under general assumptions Wλµ can be written in terms of five
structure functions Wi(q

2, (p · q)) (p is the nucleon four
momentum)

Wλµ = −gλµW1 + pλ pµ
W2

m2
N

+ ελµαβ qα pβ +
W3

m2
N

+ qλ qµ
W4

m2
N

+(pλ qµ + pµ qλ)
W5

m2
N

? In principle, the structure functions Wi can be extracted from the
measured cross sections
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NEUTRINO-NUCLEUS INTERACTION

? Replace the nucleon tensor witht the nuclear response tensor

Wλµ =
∑

n 6=0

〈0|J†λ|n〉〈n|Jµ|0〉δ(4)(p+ k − pn − k′)

? Consider, for example, a neutral current process

ν +A→ ν′ +X

? In non relativistic regime

W (q, ω) ∝ GF
4π2

LλµW
λµ =

GF
4π2

[
(1 + cos θ)Sρ +

cA
2

3
(3− cos θ)Sσ

]

where cos θ = (k · k′)/(|k||k′|), while Sρ and Sρ are the nuclear
responses in the density and spin-density channels, respectively.
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? density response

Sρ =
1

N

∑

n

|〈0|J0|n〉〈n|J0|0〉δ(4)(P0 + q − Pn)

? spin-density response (α, β = 1, . . . 3)

Sρ =
∑

α

Sραα

Sραβ =
1

N

∑

n

|〈0|Jα|n〉〈n|Jβ |0〉δ(4)(P0 + q − Pn)

? Neutral weak current

J0 =
∑

i

j0
i =

∑

i

eiq·xi , Jα =
∑

i

jµi =
∑

i

eiq·xiσα

? Outstanding issues
. Model nuclear dynamics
. Determine the nuclear initial and final states
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MODELING NUCLEAR DYNAMICS
? ab initio (bottom-up) approach

H =
∑

i

p2
i

2m
+
∑

j>i

vij +
∑

k>j>i

vijk

. vij provides a very accurate descritpion of the two-nucleon system,
and reduces to Yukawa’s one-pion-exchange potential at large
distances

. inclusion of vijk needed to explain the ground-state energies of the
three-nucleon systems

. vij is spin and isospin dependent, and strongly repulsive at short
distance

. note: nuclear interactions can not be treated in perturbation theory
in the basis of eigenstates of the non interacting system. Either the
interaction or the basis states need to be “renormalized” to
incorporate non perturbative effetcs

? Mean field (independent particle) approximation
{∑

j>i

vij +
∑

k>j>i

vijk

}
→
∑

i

Ui
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EFFECTIVE INTERACTION

? The effective interaction in nuclear matter at density ρ is defined
through the relation [kF = (3π2ρ/2)1/3]

〈0|H|0〉 =
3

5

k2
F

2m
+ 〈0FG|Veff |0FG〉

? unlike the bare NN potential, Veff is well behaved, and can be
used to perform perturbative calculations in the basis of
eigenstates of the non interacting system

? the response can be also computed using the Fermi gas states
and the corresponding effective operators, defined through

〈n|Jµ|0〉 = 〈nFG|Jµeff |0FG〉
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EFFECTIVE INTERACTION

? Comparison between bare and CBF effective interaction at
nuclear matter equilibrium density
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INTERACTION EFFECTS

? Mean field effects
. Change of nucleon energy spectrum

ek =
k2

2m
+

∑
k′

〈kk′|Veff |kk′〉a

. Effective mass
1

m?
k

=
1

|k|
dek
d|k|

? Correlation effects
. Effective operators couple the ground state to

two-particle–two-hole (2p2h) final states, thus removing strength
from the 1p1h sector

M2p2h = 〈2p2h|Jµeff |0〉 6= 0→M1p1h = 〈1p1h|Jµeff |0〉 < 〈1p1h|J
µ|0〉
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? Nucleon energy spectrum and
Effective mass in
isospin-symmetric matter at
equilibrium density ? Quenching of Fermi transition

strength in isospin-symmetric
matter at equilibrium density
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q-EVOLUTION OF INTERACTION EFFECTS
? Density response of isospin-symmetric matter at equilibrium

density

|q| = 3.0 fm−1

|q| = 1.8 fm−1

|q| = 0.3 fm−1
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LONG-RANGE CORRELATIONS

? At low momentum transfer the space resolusion of the neutrino
becomes much larger than the average NN separation distance
(∼ 1.5 fm), and the interaction involves many nucleons

← λ ∼ q−1 →

d

? Write the nuclear final state as
a superposition of 1p1h states
(RPA scheme)

|n〉 =

N∑

i=1

Ci |pihi)

+ + + . . .
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EFFECTS OF LONG-RANGE CORRELATIONS
I |q|-evolution of the density-response of isospsin-symmetric

nuclear matter. Calculation carried out within CBF using a
realistic nuclear hamiltonian.

|q| ≈ 480 MeV

|q| ≈ 300 MeV

|q| ≈ 60 MeV

308 O. Benhar, N. Farina / Physics Letters B 680 (2009) 305–309

The FG ph states, while being eigenstates of the HF Hamiltonian

HHF =
∑

k

ek, (12)

with ek given by Eq. (10), are not eigenstates of the full nuclear
Hamiltonian. As a consequence, there is a residual interaction V res
that can induce transitions between different ph states, as long as
their total momentum, q, spin and isospin are conserved.

We have included the effects of these transitions, using the
Tamm Dancoff (TD) approximation, which amounts to expanding
the final state in the basis of one 1p1h states according to [27]

| f ) = |q, T S M) =
∑

i

cT S M
i |pihi, T S M), (13)

where pi = hi +q, S and T denote the total spin and isospin of the
particle–hole pair and M is the spin projection along the quantiza-
tion axis.

At fixed q, the excitation energy of the state | f ), ω f , as well as
the coefficients cT SM

i , are determined solving the eigenvalue equa-
tion

H| f ) = (HHF + V res)| f ) = (E0 + ω f )| f ), (14)

where E0 is the ground state energy. Within our approach this
amounts to diagonalizing a Nh × Nh matrix whose elements are

H T S M
ij = (E0 + epi − ehi )δi j + (hi pi, T S M|V eff|h j p j, T S M). (15)

In TD approximation, the response can be written as

S(q,ω) =
∑

T S M

Nh∑

n=1

∣∣∣∣∣

Nh∑

i=1

(
cT S M

n
)

i(hi pi, T S M|O eff(q)|0)

∣∣∣∣∣

2

× δ
(
ω − ωT S M

n
)
, (16)

where (cT SM
n )i denotes the i-th component of the eigenvector be-

longing to the eigenvalue ωT SM
n .

The diagonalization has been performed using a basis of Nh ∼
3000 ph states for each spin–isospin channel. The appearance of an
eigenvalue lying outside the particle hole continuum, correspond-
ing to a collective excitation reminiscent of the plasmon mode of
the electron gas, is clearly visible in panel (A) of Fig. 3, showing the
TD response at |q| = 0.3 fm−1 for the case of Fermi transitions. For
comparison, the result of the correlated HF approximation is also
displayed. Note that the sharp peak arises from the contributions
of particle–hole pairs with S = 1, T = 0.

In order to identify the kinematical regime in which long range
correlations are important, we have studied the TD response in
the region 0.3 ! |q| ! 3.0 fm−1. The results show that at |q| "
1.2 fm−1 the peak corresponding to the collective mode in the
S = 1, T = 0 channel is still visible, although less prominent. How-
ever, it disappears if the exchange contribution to the matrix ele-
ment of the effective interaction appearing in the rhs of Eq. (15) is
neglected.

The transition to the regime in which short-range correlations
dominate is illustrated in panels (B) and (C) of Fig. 3, showing
the comparison between TD and HF responses at |q| = 1.5 and
2.4 fm−1, respectively.

At |q| = 1.5 fm−1 the peak no longer sticks out, but the effect
of the mixing of ph states with S = 1 and T = 0 is still detectable,
resulting in a significant enhancement of the strength at large ω.
At |q| = 2.4 fm−1 the role of long range correlations turns out to
be negligible, and the TD and correlated HF responses come very
close to one another. The calculation of the response associated
with Gamow–Teller transitions shows a similar pattern.

Fig. 3. Nuclear matter response calculated within the TD (squares) and correlated
HF (diamonds) approximations, for the case of Fermi transitions. Panels (A), (B) and
(C) correspond to |q| = 0.3, 1.5 and 2.4 fm−1, respectively.

5. Conclusions

The CBF formalism employed in our work is ideally suited to
construct an effective interaction starting from a realistic NN po-
tential. The resulting effective interaction, which has been shown
to provide a quite reasonable account of the equation of state of
cold nuclear matter [16], allows for a consistent description of the
weak response in the regions of both low and high momentum
transfer, where different interaction effects are important.

The results of our calculations, obtained including 1p1h final
states, suggest that in addition to the HF mean field, which moves
the kinematical limit of the transitions to 1p1h states well be-
yond the FG value, correlation effects play a major role, and must
be taken into account. While at |q| " 0.5 fm−1 long-range cor-
relations, leading to the appearance of a collective mode outside
the particle–hole continuum, dominate, at |q| # 2.0 fm−1 the most
prominent effect is the quenching due to short-range correlations.

In principle, the uncertainty associated with the truncation of
the space of final states at the 1p1h level can be estimated study-
ing the static structure function S(q) and the sum rules of the
responses [28]. We have verified that the S(q) goes linearly to zero
for vanishing |q|, as required by particle number conservation.

A more quantitative understanding of the role of two particle-
two hole (2p2h) final states can be gained comparing the response
resulting from the approach discussed in the present Letter and
that obtained using the spectral function formalism, applicable in
the impulse approximation regime [24]. The results of Ref. [24]
suggest that the main effect of 2p2h states, which are explicitely
taken into account in the spectral function, is the appearance of a
tail extending to large energy transfer.

As pointed out in Section 2, the differences between our work
and that of Ref. [8] arise from the definitions of both the ef-
fective interaction and the effective operators. Three- and many-
nucleon forces, taken into account in our approach, play a marginal
role at nuclear matter equilibrium density, their inclusion lead-
ing to changes that never exceed 15% in the Fermi TD response

OB and N. Farina, PLB 680 305, (2009)
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NEUTRINO MEAN FREE PATH IN NEUTRON MATTER

? The mean free path of non degenerate neutrinos at zero
temperature is obtained from

1

λ
=
G2
F

4
ρ

∫
d3q

(2π)3

[
(1 + cos θ)S(q, ω) + C2

A(3− cos θ)S(q, ω)
]

where S and S are the density (Fermi) and spin (Gamow Teller)
response, respectively

1.6

1.8

2

2.2

2.4

2.6

5 10 15 20 25 30 35 40

λ
/λ

F
G

Eν [MeV]

CTD full expression
CTD simplified expression

CTD without collective mode

? Both short and long range correlations important
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HIGH-ENERGY REGIME: THE IMPULSE APPROXIMATION

I The IA amounts to replacing

Σ
i

2 2
q,ω q,ω

i
x

Jµ =
∑

i

jµ(i) , |X〉 → |x,px〉 ⊗ |R,pR〉 .

I Nuclear dynamics and electromagnetic interactions are
decoupled. Relativistic effect can be properly accounted for

dσA =

∫
d3kdE dσN Ph(k, E)

. The electron-nucleon cross section dσN can be written in terms of
stucture functions extracted from electron-proton and
electron-deuteron scattering data

. The hole spectral function Ph(k, E), momentum and energy
distribution of the knocked out nucleon, can be obtained from ab
initio many-body calculations
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OXYGEN SPECTRAL FUNCTION

• shell model states account for ∼ 80% of the strenght
• the remaining ∼ 20%, arising from NN correlations, is located at

high momentum and large removal energy
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QUASI ELASTIC ELECTRON SCATTERING

I Elementary interaction vertex described in terms of the vector
form factors, F (p,n)

1 and F (p,n)
2 , precisely measured over a broad

range of Q2

I Position and width of the peak are determined by Ph(k, E)

I The tail extending to the region of high energy loss is due to
nucleon-nucleon correlations in the initial state, leading to the
occurrence of two particle-two hole (2p2h) final states
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ANALYSIS OF MINIBOONE CCQE DATA

. MiniBooNE flux

. MiniBooNe CCQE data
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CONTRIBUTION OF DIFFERENT REACTION MECHANISMS

I In neutrino interactions the lepton kinematics is not determined.
The flux-averaged cross sections at fixed Tµ and cos θµ picks up
contributions at different beam energies, corresponding to a
variety of kinematical regimes in which different reaction
mechanisms dominate

. x = 1→ Eν 0.788 GeV , x = 0.5→ Eν 0.975 GeV

. Φ(0.975)/Φ(0.788) = 0.83
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“FLUX AVERAGED” ELECTRON-NUCLEUS X-SECTION

I The electron scattering x-section off Carbon at θe= 37◦ has been
measured for a number of beam energies

I Theoretical calculations of the flux-averaged cross sections must
include all relevant reaction mechanism—one and two -nucleon
emission, excitation of nucleon resonances and deep inelastic
scattering—within a consistent approach
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SUMMARY & OUTLOOK

? The study of neutrino interactions with nuclear matter and
nuclei is a strongly cross-disciplinary field, with applications in a
variety of areas, ranging from the astrophysics of compact stars
to the search of neutrino oscillations

? Recent studies carried out within nuclear many-body theory
using realistic hamiltonians have revealed a variety of dynamical
effects, whose effects on the nuclear response are large

? The emerging picture suggests that a unified description of the
nuclear response in a broad kinematical range cortresponding to
neutrino energies ranging from few MeV to few GeV
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Backup slides
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NEUTRINO-NUCLEON INTERACTIONS
? In the regime of momentum transfer (q) discussed in this talk

Fermi theory of weak interaction works just fine

W,Z0

? x-section of the charged-current process ν` + n→ `− +X

dσ ∝ LλµWλµ

. Lλµ is determined by the lepton kinematical variables (more on
this later)

. under general assumptions Wλµ can be written in terms of five
structure functions Wi(q

2, (p · q)) (p is the nucleon four
momentum)

Wλµ = −gλµW1 + pλ pµ
W2

m2
N

+ ελµαβ qα pβ +
W3

m2
N

+ qλ qµ
W4

m2
N

+(pλ qµ + pµ qλ)
W5

m2
N
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? In principle, the structure functions Wi can be extracted from the
measured cross sections

? In the charged-current elastic sector ν` + n→ `− + p they can be
expressed in terms of vector (F1(q2) and F2(q2)), axial-vector
(FA(q2)) and pseudoscalar (FP (q2)) form factors

W1 = 2

[
−q

2

2
(F1 + F2)

2
+

(
2m2

N −
q2

2

)
FA

2

]

W2 = 4

[
F1

2 −
(

q2

4m2
N

)
F2

2 + FA
2

]
= 2W5

W3 = −4 (F1 + F2) FA

W4 = −2

[
F1 F2 +

(
2m2

N +
q2

2

)
F2

2

4m2
N

+
q2

2
FP

2 − 2mN FP FA

]

? according to the CVC hypothesis, F1 and F2 can be related to the
electromagnetic form factors, measured by electron-nucleon
scattering, while PCAC allows one to express FP in terms of the
axial form factor (more on this later)
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VECTOR FORM FACTORS

? Proton data

? Neutron
(deuteron) data

2.2.1 Proton form factor measurements

Figure 4 shows Rosenbluth separation results performed in the 1970’s as the ratio GEp/GD, where GD is the
dipole FF given below by Eq. 14; it is noteworthy that these results strongly suggest a decrease of GEp with
increasing Q2, a fact noted in all four references [Ber71, Pri71, Bar73, Han73]. As will be seen in section
3.4, the slope of this decrease is about half the one found in recent recoil polarization experiments. Left
out of this figure are the data of Litt et al. [Lit70], the first of a series of SLAC experiments which were
going to lead to the concept of “scaling” based on Rosenbluth separation results, namely the empirical relation
µpGEp/GMp ∼ 1. Predictions of the proton FF GEp made in the same period and shown in Fig. 4 are from
Refs. [Iac73, Hoh76, Gar85], all three are based on a dispersion relation description of the FFs, and related to
the vector meson dominance model (VMD).

Figure 5: Data base for GEp obtained by the Rosen-
bluth method; the references are [Han63, Lit70, Pri71,
Ber71, Bar73, Han73, Bor75, Sim80, And94, Wal94,
Chr04, Qat05].

Figure 6: Data base for GMp obtained by the
Rosenbluth method; the references are [Han63, Jan66,
Cow68, Lit70, Pri71, Ber71, Han73, Bar73, Bor75,
Sil93, And94, Wal94, Chr04, Qat05].

A compilation of all GEp and GMp data obtained by the the Rosenbluth separation technique is shown in
Figs. 5 and 6; in these two figures both GEp and GMp have been divided by the dipole FF GD given by:

GD =
1

(1 + Q2/0.71GeV 2)2
with GEp = GD, GMp = µpGD, and GMn = µnGD. (14)

It is apparent from Fig. 5 that the cross section data have lost track of GEp above Q2 ∼ 1 GeV2. It is difficult
to obtainG2

E for large Q2 values by Rosenbluth separation from ep cross section data for several reasons; first,

10
Figure 20: GEn data as in Fig. 18, compared to the
fits [Kel04] (thick line) and [Gal71] (thin solid line).
Platchkov’s fits [Pla90] with 3 differentNN potentials
shown as dotted [Rei68], dot-dashed [Lac81] and long
dashes [Wir84] lines, respectively.

Figure 21: The complete data base for GMn, from
cross section and polarization measurements. Shown
as a solid curve is the polynomial fit by Kelly [Kel04];
note that the recent data of [Bro05] are not included
in this fit.

corrections, and the ratio GE/GM even less being a ratio of ratios. Nevertheless polarization data ultimately
will require radiative corrections, particularly as experiments continue into the domain of yet larger Q2. So is
the discrepancy between Rosenbluth and polarization data entirely due to inaccuracy or incompleteness in the
radiative correction? An immediate consequence of the previous statements is that radiative corrections for
elastic ep scattering in general have to be reexamined, as in their presently practiced form they are unable to
reconcile the cross section results with polarization results.

Encouraging progress has been made including the one process certainly neglected in all previous ra-
diative corrections, the exchange of two photons, neither one of them “soft” (this will be further discussed
in section 3.5). Several calculations [Gui03, Afa05a, Blu03] suggest that this one diagram may contribute
significantly to the ε-dependence of the cross section; other considerations lead to the conclusion that the con-
tribution from the two-photon term is too small at the Q2-values of interest [Bys06], and/or leads to a definite
non-linearity in the Rosenbluth plot which has not been seen in the data so far [Tom05].

Following the publication of the JLab recoil polarizationGEp/GMp ratios up to 5.54 GeV2, the entire cross
section data base for the proton has been reanalyzed by Brash et al. [Bra02], leaving all data above Q2 = 1
GeV2 out, using the data from [Jon00, Gay02] above this value ofQ2, and allowing for relative renormalization
of all cross section data so as to minimize the χ2 of a global fit forGMp. The fitting function is the inverse of a
polynomial of order 5. The renormalized values of GMp show less scatter than the original data base, and the
net effect of imposing the recoil polarization results is to re-normalize all GMp data upward by 1.5-3% when
compared with the older Bosted parametrization [Bos95], as shown in Fig. 23.

Another useful fit to the nucleon FFs which gives a good representation of the data is the one by Kelly
[Kel04]. This fit uses ratios of polynomials with maximum powers chosen such that GEp, GMp and GMn

have the asymptotic 1/Q4 behavior required by pQCD; in [Kel04] GEn was also re-fitted with a Galster FF, as
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AXIAL FORM FACTOR

? Dipole
parametrization

FA(Q2) =
gA

[1 + (Q2/M2
A)]

2

Axial structure of the nucleon 4

(anti)neutrino scattering off protons [8, 9, 10], off deuterons [11]-[16] and other nuclei (Al,

Fe) [17, 18] or composite targets like freon [19]-[22] and propane [22, 23]. In the left panel

of figure 1 we show the available values for the axial mass MA obtained from neutrino

scattering experiments. As pointed out in [24], references [17, 19, 20, 23] reported

0.85 0.95 1.05 1.15 1.25
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Figure 1. Axial mass MA extractions. Left panel: From (quasi)elastic neutrino

and antineutrino scattering experiments. The weighted average is MA = (1.026 ±
0.021)GeV. Right panel: From charged pion electroproduction experiments. The

weighted average is MA = (1.069 ± 0.016)GeV. Note that value for the MAMI

experiment contains both the statistical and systematical uncertainty; for other values

the systematical errors were not explicitly given. The labels SP, DR, FPV and BNR

refer to different methods evaluating the corrections beyond the soft pion limit as

explained in the text.

severe uncertainties in either knowledge of the incident neutrino flux or reliability of the

theoretical input needed to subtract the background from genuine elastic events (both

of which gradually improved in subsequent experiments). The values derived in these

papers fall well outside the most probable range of values known today and exhibit

very large statistical and systematical errors. Following the data selection criteria of

the Particle Data Group [4], they were excluded from this compilation. In all cases,

the axial form factor data were parameterized in terms of a dipole, the resulting world

average is

MA = (1.026 ± 0.021) GeV (neutrino scattering) . (9)

The other determinations of the axial form factor are based on the analysis of charged

pion electroproduction off protons, see references [24][25]-[34], slightly above the pion

production threshold (note that the MAMI measurement is presently extended [35] to

lower momentum transfer and to check the cross section at the highest Q2 point reported

in [24]). Such type of analysis is more involved. It starts from the low–energy theorem of

Nambu, Lurié and Shrauner [36, 37] for the electric dipole amplitude E
(−)
0+ at threshold,

. gA from neutron β-decay

. axial mass MA from (quasi) elastic ν- and ν̄-deuteron experiment
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TAMM-DANCOFF (RING) APPROXIMATION

? Propagation of the particle-hole pair produced at the interaction
vertex gives rise to a collective excitation. Replace

|ph〉 → |n〉 =

N∑

i=1

Ci |pihi)

? The energy of the state |n〉 and the coefficients Ci are obtained
diagonalizing the hamiltonian matrix

Hij = (E0 + epi − ehi
)δij + (hipi|Veff |hjpj)

ek =
k2

2m
+
∑

k′

〈kk′|Veff |kk′〉a

? The appearance of an eigenvalue, ωn, lying outside the
particle-hole continuum signals the excitation of a collective
mode

31 / 25



EXCITATION OF COLLECTIVE MODES

? Density (a) and spin-density (b) responses of isospin-symmetric
nuclear matter at equilibrium densityA. Lovato et al. / Nuclear Physics A 901 (2013) 22–50 45

Fig. 13. Fermi (a) and Gamow–Teller (b) response functions of SNM at ρ = 0.16 fm−3, evaluated at q = 0.10, 0.15,
0.20, 0.25, 0.30, 0.40, and 0.50 fm−1 using the v6′ + UIX potential and correlation functions.

distribution entering the VGS calculation at three-body cluster level, the result of which is de-
noted VGS3b.

The static structure functions corresponding to the Fermi and Gamow–Teller transitions are
displayed in panels (a) and (b) of Fig. 14, respectively. The CTD results have been obtained
with the effective interaction based on the Argonne v′

6 + UIX Hamiltonian and the correspond-
ing correlations (see Table 2) have been used in the calculation of the effective operators. The
Hamiltonian entering the variational estimates, VGS and VGS3b, has been consistently chosen
to be the Argonne v′

6 + UIX.
The curves corresponding to the Fermi transition are normalized in order for the sum rule of

the non-interacting FG to approach unity in the |q| → ∞ limit. On the other hand, the Gamow–
Teller results are normalized in such a way that both the transverse and longitudinal sum rules,
to be defined below, tend to the same limit.

A. Lovato et al. / Nuclear Physics A 901 (2013) 22–50 45

Fig. 13. Fermi (a) and Gamow–Teller (b) response functions of SNM at ρ = 0.16 fm−3, evaluated at q = 0.10, 0.15,
0.20, 0.25, 0.30, 0.40, and 0.50 fm−1 using the v6′ + UIX potential and correlation functions.

distribution entering the VGS calculation at three-body cluster level, the result of which is de-
noted VGS3b.

The static structure functions corresponding to the Fermi and Gamow–Teller transitions are
displayed in panels (a) and (b) of Fig. 14, respectively. The CTD results have been obtained
with the effective interaction based on the Argonne v′

6 + UIX Hamiltonian and the correspond-
ing correlations (see Table 2) have been used in the calculation of the effective operators. The
Hamiltonian entering the variational estimates, VGS and VGS3b, has been consistently chosen
to be the Argonne v′

6 + UIX.
The curves corresponding to the Fermi transition are normalized in order for the sum rule of

the non-interacting FG to approach unity in the |q| → ∞ limit. On the other hand, the Gamow–
Teller results are normalized in such a way that both the transverse and longitudinal sum rules,
to be defined below, tend to the same limit.

? |q| = 0.1, 0.15, 0.20, 0.25, 0.30, 0.40 and 0.50 fm−1
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? Mean free path of a non degenerate neutrino in neutron matter.
Left: density-dependence at k0 = 1 MeV and T = 0 ; Right:
energy dependence at ρ = 0.16 fm−3 and T = 0, 2 MeV
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? Density and temperature dependence of the mean free path of a
non degenerate neutrino at k0 = 1 MeV and ρ = 0.16 fm−3
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