! Interaction with the Geant4 k¢

GAP Cirrone, Luciano Pandola

INFN-LNS

INFN
L/ Geants

! The main ingredients

* Optional user classes - 1

- Five concrete base classes whose virtual member
functions the user may override to gain control of the
simulation at various stages

' G4UserRunAct|0|.1 e.g. actions to be done
- G4UserEventAction _ at the beginning and

- G4UserTrackingAction end of each event

- G4UserStackingAction

- G4UserSteppingAction

- Each member function of the base classes has a
dummy implementation (not purely virtual)
- Empty implementation: does nothing

* Optional user classes - 2

= The user may implement the member
functions he desires in his/her derived classes

- E.g. one may want to perform some action at each
tracking step

= Objects of user action classes must be
registered to the G4 (MT) RunManager Via
the ActionInitialization

runManager—->SetUserAction (new
MyActionInitialization);

Geant4 terminology: an

* overview

= The following keywords are often used in
Geant4

- Run, Event, Track, Step
- Processes: At Rest, Along Step, Post Step
- Cut (or production threshold)

*The Run (G4Run)

= As an analogy with a real experiment, a run of Geant4
starts with ‘Beam On’

= Within a run, the User cannot change
- The detector setup
- The physics setting (processes, models)

= A Run is a collection of events with the same detector and
physics conditions

= At the beginning of a Run, geometry is optimised for
navigation and cross section tables are (re)calculated

- The G4RunManager class manages the processing of each
Run, represented by:

- G4Run class
- G4UserRunAction for an optional User hook

* The Event (G4Event)

An Event is the basic unit of simulation in Geant4

At the beginning of processing, primary tracks are generated
and they are pushed into a stack

= A track is popped up from the stack one-by-one and ‘tracked’
- Secondary tracks are also pushed into the stack

- When the stack gets empty, the processing of the event is
completed

G4Event class represents an event. At the end of a successful
event it has:

- List of primary vertices and particles (as input)
- Hits and Trajectory collections (as outputs)
G4EventManager class manages the event

G4UserEventAction is the optional User hook

* The Step (G4Step)

= G4Step represents a step in the particle propagation
- A G4Step object stores transient information of the

step

- In the tracking algorithm, G4Step is updated each time

a process is invoked

= You can extract information from a step after the step

is completed

- Both, the ProcessHits () method of your sensitive
detector and UserSteppingAction () of your step

action class file get t

ne pointer of G4Step

- Typically , you may retrieve information in these

functions (for examp
action)

e fill histograms in Stepping

* The Track (G4Track)

The Track is a snapshot of a particle and it is represented by
the G4Track class

- It keeps ‘current” information of the particle (i.e. energy,
momentum, position, polarization, ;J

- It is updated after every step
The track object is deleted when
- It goes outside the world volume
- It disappears in an interaction (decay, inelastic scattering)

- It is slowed down to zero kinetic energy and there are no
'AtRest' processes

- It is manually killed by the user
No track object persists at the end of the event
GATrackingManager class manages the tracking

GAUserTrackingAction is the optional User hook

* Run, Event and Tracks

- One Run consists of
- Event #1 (track #1, track #2,)
- Event #2 (track #1, track #2,)

Example of an Event and

‘_.J_ Tracks

T2
/ Tl (priimary track)
_—

5\,

T4 |(ParentID = 1)

(world volume)

(ParentID = 3) T 6

7v 13 18

Tracking order follows ‘last in first out’ rule:
T1->T4->T3->T6->T7->T5->T8->T2

ER AR AR AR R R AR R R AR AR R R A AR AR R R AR R R A R R AR AR AR AR AR R R AR AR R R AN R AR R R AR R R A AR AR AR AR R A AR R AR RAA R R A AR AR AR AR R R A AR AR AR

* G4Track Information: Particle = e-, Track ID = 1, Parent ID = 0

AR AR AN A R R R A R R R R AN R R RN A RN RN R A A R R R N R R RN AN A R RN A R R R R R AN A R RN AR AN R A A R R AN AN RN A A AR RN AT AR R AN A R RN AR AN R AT R RN AR AR AR A

Step# X (mm) Y (mm) Z(mm) KinE(MeV) dE(MeV) StepLeng TrackLeng NextVolume ProcName
0 711 711 -0.275 5.98 0 0 acceleratorBox initStep
1 707 707 -0.26 5.98 1.43e-25 4. 99 4.99 targetB Transportation
2 707 707 -0.26 5.98 3.91le-05 3.8e-05 4.99 targetB msc
3 707 707 -0.247 5.85 0.127 0.101 5.09 targetB msc
- 707 707 -0.25 5.76 0.091 0.101 5.19 targetB msc
5 707 707 -0.258 5.62 0.145 0.101 5.29 targetB msc
6 707 707 -0.254 5.5 0.117 0.101 5.39 targetB msc
7 707 707 -0.231 5.4 0.104 0.101 5.49 targetB msc
8 707 707 -0.21 5.24 0.156 0.101 5.59 targetB msc
9 707 707 -0.186 5 0.237 0.101 5.69 targetB msc
10 707 706 -0.167 4.93 0.0761 0.101 5.79 targetB msc
11 707 706 -0.13 4.8 0.125 0.101 5.89 targetB msc
12 706 706 -0.108 4.71 0.0928 0.101 5.99 targetB msc
13 706 706 -0.106 4.63 0.0789 0.101 6.09 targetB msc
14 706 706 -0.0934 4.53 0.0981 0.101 6.19 targetB msc
15 706 706 ~0.0775 4.44 0.0882 0.101 6.29 targetB msc
16 706 706 -0.0806 4.36 0.0796 0.101 6.39 targetB msc
17 706 706 =0.0749 4.2 0.162 0.101 6.5 targetB msc
18 706 706 =0.0805 4.09 0.11 0.101 6.6 targetB msc
19 706 707 -=0.0897 < 0.0959 0.101 6.7 targetB msc
20 706 707 -0.125 3.89 0.104 0.101 6.8 targetB msc
21 706 707 -0.152 3.79 0.106 0.101 6.9 targetB msc
22 706 707 -0.189 3.68 0.111 0.101 7 targetB msc
23 706 707 -0.24 3.56 0.119 0.101 7.1 targetB msc
24 706 707 -0.312 3.41 0.149 0.101 7.2 targetB msc
25 706 707 -0.391 3.33 0.0804 0.101 7.3 targetB msc
26 706 707 ~0.467 3.26 0.0665 0.101 7.4 targetB msc
27 705 707 -0.547 3.15 0.108 0.101 7.5 targetB msc
28 705 707 -0.627 3.04 0.112 0.101 7.6 targetB msc
29 705 707 -0.708 2.94 0.0994 0.101 7.7 targetB msc
30 705 707 -0.776 2.87 0.0747 0.101 7.8 targetB msc
7.9

targetB msc

31 705 707 -0.805 2.78 0.0913 0.101

Example:
ﬂ retrieving information from tracks

// retrieving information from tracks (given the G4Track object “track”):

if(track -> GetTrackID() !=1) {
G4cout << “Particle is a secondary“ << G4endl;

// Note in this context, that primary hadrons might loose their identity
if(track -> GetParentID() == 1)
G4cout << “But parent was a primary“ << G4end]l;

G4VProcess* creatorProcess = track -> GetCreatorProcess();

if(creatorProcess -> GetProcessName() == “LowEnergyloni”) {
G4cout << “Particle was created by the Low-Energy ” <<
<< “Ionization process“ << G4end];

}
}

*The Step in Geant4

The G4Step has the information about the two points (pre-step and
ptost-step)) and the ‘delta’ information of a particle (energy loss on the
step,

Each point knows the volume (and the material)

- In case a step is limited by a volume boundary, the end point
ph|y5|cally stands on the boundary and it logically belongs to the next
volume

Post-step point

Pre-step point

G4SteppingManager Class manages processing a step; a ‘step’in
represented by the G4step class

G4UserSteppingAction is the optional User hook

* The G4Step object

- A G4Step object contains

- The two endpoints (pre and post step) so one has
access to the volumes containing these endpoints

- Changes in particle properties between the points
- Difference of particle energy, momentum,
- Energy deposition on step, step length, time-of-flight, ...

- A pointer to the associated G4Track object

- GA4Step provides many Get methods to access
these information or object istances
- GAStepPoint* GetPreStepPoint(),

* The geometry boundary

To check, if a step ends on a boundary, one may
compare 'if the physical volume of pre and post-step
points are equal

= One can also use the step status

- Step Status provides information about the process that
restricted the step length

- It is attached to the step points: the pre has the status
of the previous step, the post of the current step

- If the status of POST is "fGeometryBoundary” the
step ends on a volume boundary (does not apply to word
volume)

- To check if a step starts on a volume boundary you can
also use the step status of the PRE-step point

Step concept and boundaries

Illustration of step starting and ending on boundaries

’/"‘/V()lumc poumacy \

step ends on boundary ga post-step

pre—step point

point step starts on boundary ' x
pre—step point
/ step-status is

step status 1is _ . fGeomBoundary
fGeomBoundary DO POt

Geant4 terminology: an
overview

argest unit of simulation, that consist of a sequence of events: If a
Run G4RU n efined number of events was processed a run is finished.

G 4E t asic simulation unit in Geant4: If a defined number of primary tracks
ven nd all resulting secondary tracks were processed an event is over.

track is NOT a collection of steps: It is a snapshot of the status of a
article after a step was completed (but it does NOT record previous

teps). A track is deleted, if the particle leaves world, has zero kinetic
Track | G4Track Locq, .

Event

G 4 St epresents a particle step in the simulation and includes two points
ep [pre-step point and post-step point).

Step

Example of usage of the hook
* user classes - 1

= G4UserRunAction

- Has two methods (BeginOfRunAction () and
EndOfRunAction ()) and can be used e.g. to
initialise, analyse and store histogram

- Everything User want to know at this stage
= G4UserEventAction
- Has two methods (BeginOfEventAction () and
EndOfEventAction())
- One can apply an event selection, for example

- Access the hit-collection and perform the event
analysis

Example of usage of the hook
* user classes - 2

» GAUserStakingAction

- Classify priority of tracks
» GAUserTrackingAction

- Has two methods (PreUserTrakingAction ()
and PostUserTrackinAction())

- For example used to decide if trajectories should
be stored
» GAUserSteppingAction

- Has a method which is invoked at the end of a
step

Part II: Retrieving information

! from steps and tracks

Example:
check if step is on boundaries

// in the source file of your user step action class:

#include “G4Step.hh*

UserStepAction::UserSteppingAction(const G4Step* step) {

G4StepPoint* preStepPoint = step -> GetPreSte?Point();
G4StepPoint* postStepPoint = step -> GetPostStepPoint();

// Use the GetStepStatus() method of G4StepPoint to get the status of the
// current step (contained in post-step point) or the previous step
// (contained in pre-step point):
if(preStepPoint -> GetStepStatus() == f{GeomBoundary) {
} G4cout << “Step starts on geometry boundary“ << G4endl;
if(postStepPoint -> GetStepStatus() == fGeomBoundary) {

G4cout << “Step ends on geometry boundary“ << G4endl;

// You can retrieve the material of the next volume through the

/l post-step Eoint:
G4Material* nextMaterial = step -> GetPostStepPoint()->GetMaterial();

Example: step information in

iSD

// in source file of your sensitive detector:

MySensitiveDetector::ProcessHits(G4Step* step,
G4TouchableHistory*) {

// Total energy deposition on the step (= energy deposited by energy loss
// process and energy of secondaries that were not created since their

// energy was < Cut):

G4double energyDeposit = step -> GetTotalEnergyDeposit();

// Difference of energy , position and momentum of particle between pre-
// and post-step point

G4double deltaEnergy = step -> GetDeltaEnergy();

GAThreeVector deltaPosition = step -> GetDeltaPosition();

G4double deltaMomentum = step -> GetDeltaMomentum();

/| Step length
G4double stepLength = step -> GetStepLength();

ﬁSomething more about tracks

= After each step the track can change its state

= The status can be (in red can only be set by the
User)

* Particles in Geant4

- A particle in general has the following three sets of
properties:
- Position/geometrical info
- GATrack class (representing a particle to be tracked)
- Dynamic properties: momentum, energy, spin,..
- GADynamicParticle class
- Static properties: rest mass, charge, life time
- G4ParticleDefinition class
- All the G4DynamicParticle objects of the same

kind of particle share the same
G4ParticleDefinition

In Geant4

* Particles

G4Track

Represents a particle that travels
|in space and time

Information relevant to tracking
he particle, e.g. position, time,
tep...., and dynamic information

G4DynamicParticle

|Represents a particle that is
subject to interactions with matter

article momentum, kinetic

Dynamic information, e.g.
nergy, ..., and static information

G4ParticleDefinition

[Defines a physical particle

atic information, e.g. particle

mass, charge, ... Also physics
rocesses relevant to the
article

Examples: particle information
from step/track

#include “G4ParticleDefinition.hh*“
#include “G4DynamicParticle.hh”
#include “G4Step.hh“

#include “G4Track.hh“

// Retrieve from the current step the track (after PostStepDolt of step is
// completed):
G4Track* track = step -> GetTrack();

// From the track you can obtain the pointer to the dynamic particle:
const G4DynamicParticle* dynParticle = track -> GetDynamicParticle();

// From the dynamic Particle, retrieve the particle dgﬁnition:
G4ParticleDefinition* particle = dynParticle -> GetDefinition();

// The d}l/namic particle class contains e.g. the kinetic energy after the step:
G4double kinEnergy = dynParticle -> GetKineticEnergy();

// From the particle definition class you can retrieve static information like
// the particle name:
G4String particleName = particle -> GetParticleName();

G4cout << particleName << “: kinetic energy of “
<< kinEnergy/MeV << “ MeV*
<< G4end];

Write an ASCII file

—

1. Add to the include list of your class the <fstream> header file
*This will allow to use the C++ libraries for stream on file

2. Put into the class declaration (file .hh) an ofstream (=output file stream) object (or
pointer):

std: :ofstream myFile;

In this way, the file object will be visible in all methods of the class
3. Open the file, in the class constructor, or into a specific method:

myFile.open(*“filename.out”, std::ios::trunc);

*To append data to an existing file, you must specify std::ios::app

std: :ofstream myFile ("Data.out", std::ios::app);

myFile << eKin << '"\t' <<« " I
<< EventID << ANECCaS "
<< PreStepX RN .
<< PreStepY GGG o
<< PreStepZ << '"\t' < " 2
<< G4endl;

*This could be for instance the EndOfEventAction() of the G4UserEventAction user
class or in the UserSteppingAction class

Data analysis in Geant4

Basic classes for data analysis have recently been implemented in Geant4
(g4analysis)

4+Support for histograms and ntuples
4+Output in ROOT, XML, HBOOK and CSV (ASCII)

The resulting files can be opened and analyzed by tools such as: Gnuplot,
Excel, OpenOffice, Matlab, Origin, ROOT, PAW,...

Appropriate only for easy/quick analysis: for advanced tasks, the user must
write his/her own code and to use an external analysis tool

Native Geant4 analysis classes

S ——— B

% A basic analysis interface is available in Geant4 for histograms (1D and 2D) and ntuples
=Make life easier because they are MT-compliant (no need to worry about the
interference of threads)
% Unique interface to support different output formats ROOT, AIDA XML, CSV and HBOOK
= Code is the same, just change one line to switch from one to an other
% Everything done via the public analysis interface G4AnalysisManager

= Singleton class: Instance()
=)l commands available for creating histograms at run-time and setting their properties

¢ Selection of output format is hidden in a user-defined .hh file
% All the rest of the code unchanged
=nique interface

#ifndef MyAnalysis h
fidefine MyAnalysis h 1

#include "gdroot.hh"
' //#include "g4xml.hh"

//#include "g4csv.hh" // can be used only
with ntuples

#endif

Open file and book histograms

#include "MyAnalysis.hh"

'void MyRunAction: :BeginOfRunAction (const G4Run* run)

| {

// Get analysis manager

| G4AnalysisManager* man = G4AnalysisManager::Instance();
man->SetVerboselevel (1) ;

man->SetFirstHistoId (1) ;

// Creating histograms
man->CreateHl ("h","Title", 100, 0., 800*MeV) ;
man->CreateHl ("hh","Title",100,0.,10*MeV) ;

// Open an output file
man->OpenFile ("myoutput") ;
}

31

Fill histograms and close

—— S ———— -

#include "MyAnalysis.hh"

void MyEventAction: :EndOfEventAction(const G4Run* aRun)

{

G4AnalysisManager* man = G4AnalysisManager: :Instance();
man->FillH1 (1, fEnergyAbs) ;
man->FillH1 (2, fEnergyGap) ;

}

void MyRunAction: :EndOfRunAction(const G4Run* aRun)

{
G4AnalysisManager* man = G4AnalysisManager: :Instance() ;
man->Write () ;
man->CloseFile() ;

}
‘MyRunAction: : ~MyRunAction ()

{
delete G4AnalysisManager::Instance() ;

|
|

)
|

! The End

