
Interaction with the Geant4 kernel – part 1

GAP Cirrone, Luciano Pandola
INFN-LNS

The main ingredients

Optional user classes - 1
■ Five concrete base classes whose virtual member

functions the user may override to gain control of the
simulation at various stages
■ G4UserRunAction
■ G4UserEventAction
■ G4UserTrackingAction
■ G4UserStackingAction
■ G4UserSteppingAction

■ Each member function of the base classes has a
dummy implementation (not purely virtual)
■ Empty implementation: does nothing

e.g. actions to be done
at the beginning and
end of each event

Optional user classes - 2

■ The user may implement the member
functions he desires in his/her derived classes
■ E.g. one may want to perform some action at each

tracking step
■ Objects of user action classes must be

registered to the G4(MT)RunManager via
the ActionInitialization
runManager->SetUserAction(new
MyActionInitialization);

Geant4 terminology: an
overview

■ The following keywords are often used in
Geant4
■ Run, Event, Track, Step
■ Processes: At Rest, Along Step, Post Step
■ Cut (or production threshold)

The Run (G4Run)
■ As an analogy with a real experiment, a run of Geant4

starts with ‘Beam On’
■ Within a run, the User cannot change

■ The detector setup
■ The physics setting (processes, models)

■ A Run is a collection of events with the same detector and
physics conditions

■ At the beginning of a Run, geometry is optimised for
navigation and cross section tables are (re)calculated

■ The G4RunManager class manages the processing of each
Run, represented by:
■ G4Run class
■ G4UserRunAction for an optional User hook

The Event (G4Event)
■ An Event is the basic unit of simulation in Geant4
■ At the beginning of processing, primary tracks are generated

and they are pushed into a stack
■ A track is popped up from the stack one-by-one and ‘tracked’

■ Secondary tracks are also pushed into the stack
■ When the stack gets empty, the processing of the event is

completed
■ G4Event class represents an event. At the end of a successful

event it has:
■ List of primary vertices and particles (as input)
■ Hits and Trajectory collections (as outputs)

■ G4EventManager class manages the event
■ G4UserEventAction is the optional User hook

The Step (G4Step)
■ G4Step represents a step in the particle propagation
■ A G4Step object stores transient information of the

step
■ In the tracking algorithm, G4Step is updated each time

a process is invoked
■ You can extract information from a step after the step

is completed
■ Both, the ProcessHits() method of your sensitive

detector and UserSteppingAction() of your step
action class file get the pointer of G4Step

■ Typically , you may retrieve information in these
functions (for example fill histograms in Stepping
action)

The Track (G4Track)
■ The Track is a snapshot of a particle and it is represented by

the G4Track class
■ It keeps ‘current’ information of the particle (i.e. energy,

momentum, position, polarization, ..)
■ It is updated after every step

■ The track object is deleted when
■ It goes outside the world volume
■ It disappears in an interaction (decay, inelastic scattering)
■ It is slowed down to zero kinetic energy and there are no

'AtRest' processes
■ It is manually killed by the user

■ No track object persists at the end of the event
■ G4TrackingManager class manages the tracking
■ G4UserTrackingAction is the optional User hook

Run, Event and Tracks

■ One Run consists of
■ Event #1 (track #1, track #2,)
■ Event #2 (track #1, track #2,)
■
■ Event #N (track #1, track #2,)

Example of an Event and
Tracks

■ Tracking order follows ‘last in first out’ rule: 
T1 -> T4 -> T3 -> T6 -> T7 -> T5 -> T8 -> T2

(ParentID = 1)(ParentID = 3)

Example: 
retrieving information from tracks

The Step in Geant4

■ The G4Step has the information about the two points (pre-step and
post-step) and the ‘delta’ information of a particle (energy loss on the
step,)

■ Each point knows the volume (and the material)
■ In case a step is limited by a volume boundary, the end point

physically stands on the boundary and it logically belongs to the next
volume

■ G4SteppingManager class manages processing a step; a ‘step’ in
represented by the G4Step class

■ G4UserSteppingAction is the optional User hook

The G4Step object
■ A G4Step object contains

■ The two endpoints (pre and post step) so one has
access to the volumes containing these endpoints

■ Changes in particle properties between the points
■ Difference of particle energy, momentum,
■ Energy deposition on step, step length, time-of-flight, ...

■ A pointer to the associated G4Track object
■ G4Step provides many Get methods to access

these information or object istances
■ G4StepPoint* GetPreStepPoint(),

The geometry boundary

■ To check, if a step ends on a boundary, one may
compare if the physical volume of pre and post-step
points are equal

■ One can also use the step status
■ Step Status provides information about the process that

restricted the step length
■ It is attached to the step points: the pre has the status

of the previous step, the post of the current step
■ If the status of POST is “fGeometryBoundary” the

step ends on a volume boundary (does not apply to word
volume)

■ To check if a step starts on a volume boundary you can
also use the step status of the PRE-step point

Step concept and boundaries

Illustration of step starting and ending on boundaries

Geant4 terminology: an
overview

Example of usage of the hook
user classes - 1

■ G4UserRunAction
■ Has two methods (BeginOfRunAction() and
EndOfRunAction()) and can be used e.g. to
initialise, analyse and store histogram

■ Everything User want to know at this stage
■ G4UserEventAction

■ Has two methods (BeginOfEventAction() and
EndOfEventAction())

■ One can apply an event selection, for example
■ Access the hit-collection and perform the event

analysis

Example of usage of the hook
user classes - 2

■ G4UserStakingAction
■ Classify priority of tracks

■ G4UserTrackingAction
■ Has two methods (PreUserTrakingAction()
and PostUserTrackinAction())

■ For example used to decide if trajectories should
be stored

■ G4UserSteppingAction
■ Has a method which is invoked at the end of a

step

Part II: Retrieving information
from steps and tracks

Example:  
check if step is on boundaries

Example: step information in
SD

Something more about tracks

■ After each step the track can change its state
■ The status can be (in red can only be set by the

User)

Particles in Geant4
■ A particle in general has the following three sets of

properties:
■ Position/geometrical info

■ G4Track class (representing a particle to be tracked)
■ Dynamic properties: momentum, energy, spin,..

■ G4DynamicParticle class
■ Static properties: rest mass, charge, life time

■ G4ParticleDefinition class

■ All the G4DynamicParticle objects of the same
kind of particle share the same
G4ParticleDefinition

Particles in Geant4

Examples: particle information
from step/track

29

30

31

32

33

The End

