
OpenCL Base Course
Ing. Marco Stefano Scroppo, PhD Student at University of Catania

Course Overview

This OpenCL base course is structured as follows:

• Introduction to GPGPU programming, parallel programming and heterogeneous
programming

• The OpenCL framework

• OpenCL programming

• Introduction to OpenCL programming

• Guidelines through examples

• OpenCL programming - students hands-on

CPU
• Central Processing Unit (CPU) of a computer system must be able to perform a

wide variety of tasks efficiently.

• The increase of CPU performance corresponds to the increase of the core clock

frequency.

• But now it has reached the limit and it is no longer possible due to power
requirements.

• Today, processor cores are not getting any faster, but instead we are getting
increasing numbers of cores per chip.

GPU

• A Graphics Processing Unit (GPU) is a kind of processor primarily used to manage and

boost the performance of video and graphics

• The main feature of a GPU is the presence of a high number (hundreds) of simplistic cores

• GPUs work in tandem with the CPU, and are responsible for generating the graphical

output display (computing pixel values)

• Inherently parallel - each core computes a certain set of pixels

• Architecture has evolved for this purpose

CPU vs GPU

GPGPU

• GPGPU: General Purpose computation on Graphics Processing Units.

• Idea: using GPU for generic computations

• GPU acts as an “accelerator” to the CPU (Heterogeneous System)

• Most lines of code are executed on the CPU

• Key computational kernels are executed on the GPU

• Taking advantage of the large number of cores and high graphics memory bandwidth

• AIM: code performs better than use of CPU alone.

• Nvidia was the pioneer for GPGPU.

• It created CUDA Language (based on C) and the guidelines to follow

Heterogeneous Computing

• Heterogeneous computing exploit the capabilities of different computing resources in
a system like

• CPU

• GPU

• Multicore Microprocessor

• Digital Signal Processor

• Reconfigurable Hardware (field-programmable gate arrays)

Heterogeneous Computing

• Heterogeneous applications commonly include a mix of workload behaviors:

• control intensive (e.g. searching, sorting, and parsing)

• data intensive (e.g. image processing, simulation and modeling, and data mining)

• compute intensive (e.g. iterative methods, numerical methods, and financial modeling)

• Each of these workload classes executes most efficiently on a specific style of hardware
architecture and no single device is best for running all classes of workloads. For
example:

• Control-intensive applications tend to run faster on superscalar CPUs

• They use branch prediction mechanism that are very powerful on this hardware

• Data-intensive applications tend to run faster on vector architectures

• In this kind of application the same operation is applied to multiple data items, and on vector
architecturs multiple operations can be executed in parallel

Heterogeneous Computing

• Heterogeneous computing is usually used to obtain a high level of parallelization

• This increase performance in applications where there are several workloads

• The use of a graphics processing unit (GPU) together with a CPU to accelerate
scientific, analytics, engineering, consumer, and enterprise applications is a simple and
common scenario of the heterogeneous programming

Heterogeneous Computing

Parallel Programming

• Most applications are first programmed to run on a single processor

• But sometimes applications can be parallelized

• The parallel programming is the ability to use multiple computing resources to speed
up the computation

• Two kinds of parallelism:

• Task-based: each unit carries out a different job.

• Data-based: all units do the same work on different subsets of the data

Parallel Programming

Parallel Programming

• A problem can be parallelized only if it can be divided into independent subproblems

• If the problem can be divided, it’s possible to use a decomposition method

• Two main decomposition methods:

• Scatter-gather

• send a subset of the input data
to each parallel resource, and
then collect the results of the
computation and combine
them into a result data set

• Divide-and-conquer

• iteratively break a problem
into smaller subproblems
until the subproblems fit well
on the computational
resources provided

Parallel Programming

Parallelism Sample

• Classic Sample: multiplication of the elements of two arrays A and B (each with N
elements) storing the result of each multiply in the corresponding element of array C

• The standard way to develop this sample is implementing a sequential solution

• Problem: this solution execute N-times line 2 (one for each element in the array)
without parallelism

Parallelism Sample

• Question: Is the sample parrallelizable? And why?

• Answer: Yes!!!!! The sample is parallelizable because the multiplication of each element
in A and B is indipendent of every other element.

• It’s possible to create indipendent subproblems.

• Solution: Generate a separate execution instance to perform the computation of each
element of C. This code possesses significant data-level parallelism because it’s
possible to perform the same operation in parallel to all the elements of A and B to
produce C.

Parallelism Sample – Parallel Solution

Heterogeneous Computing - Problem

• For a class of algorithms developers write code in C or C++ and run it on a CPU.

• For another class of algorithms developers often write code in CUDA and use a GPU

• Two related approaches, but each worked on only one kind of processor and developers
has to specialize in one and ignore the other.

how do you program such machines?

OpenCL

• The solution is Open Computing Language or OpenCL, a programming language
developed specifically to support heterogeneous computing environments.

OpenCL - Introduction

• OpenCL is managed by the nonprofit technology consortium Khronos Group (Apple, IBM,
NVIDIA, AMD, Intel, ARM, etc).

• The aim of OpenCL is enable the development of applications that can be executed across a
range of devices made by different vendors.

• Using the core language and correctly following the specification, any program designed for one
vendor can execute on another vendor’s hardware.

OpenCL - Introduction

• The first version of OpenCL, version 1.0, was released in 2008, and appeared in Apple’s
Mac OSX Snow Leopard.

• AMD announced support for OpenCL in the same timeframe, and in 2009 IBM announced
support for OpenCL in its XL compilers for the Power architecture.

• In 2010, the Khronos Group released version 1.1 of the OpenCL specification

• In 2011 released version 1.2

• In 2013 released version 2.0 (actual version).

OpenCL - Introduction

• OpenCL supports multiple levels of parallelism.

• It efficiently maps to

• homogeneous or heterogeneous systems.

• single- or multiple-device systems consisting of CPUs, GPUs, and other types of devices
limited only by the imagination of vendors.

• OpenCL code is written in OpenCL C, a restricted version of the C99 language with
extensions appropriate for executing data-parallel code on a variety of heterogeneous
devices.

OpenCL or OpenGL

• OpenCL is similar to OpenGL but THEY ARE NOT THE SAME!!!!!!!

• OpenCL is specifically crafted to increase computing efficiency across platforms and it
is typically used for image processing algorithms, physical simulations. It returns
numerical results (NO IMAGE RESULTS).

• OpenGL is a graphical API that allows you to send rendering commands to the GPU.
Typically, the goal is to show the rendering on screen.

OpenCL - Specification

The OpenCL specification is defined in four parts, which it refers to as models.

1. Platform model: Specifies that there is one host processor coordinating execution,
and one or more device processors whose job it is to execute OpenCL C kernels. It
also defines an abstract hardware model for devices.

2. Execution model: Defines how the OpenCL environment is configured by the host,
and how the host may direct the devices to perform work. This includes defining an
environment for execution on the host, mechanisms for host-device interaction, and
a concurrency model used when configuring kernels. The concurrency model defines
how an algorithm is decomposed into OpenCL work-items and work-groups.

OpenCL - Specification

3. Kernel programming model: Defines how the concurrency model is mapped to
physical hardware.

4. Memory model: Defines memory object types, and the abstract memory hierarchy
that kernels use regardless of the actual underlying memory architecture. It also
contains requirements for memory ordering and optional shared virtual memory
between the host and devices.

OpenCL – Platform Model

• An OpenCL platform consists of a host connected to one or more OpenCL devices.

• A device is divided into one or more compute units (functionally independent), which
are further divided into one or more processing elements.

• A system could have multiple platform present at the same time: for example, an AMD
platform and an Intel platform present on the same machine.

OpenCL – Platform Model

The AMD Radeon R9 290X graphics card (device) comprises 44 vector processors
(compute units). Each compute unit has four 16-lane SIMD (Single Instrunction Multiple
Data) engines, for a total of 64 lanes (processing elements). Each SIMD lane on the
Radeon R9 290X executes a scalar instruction.

This allows the GPU device to execute a total of 44 × 16 × 4 = 2816 instructions at a time.

OpenCL – Platform Model API

OpenCL offers two API function for discovering platforms and devices:

Let's analyze their behavior in a example:
clInfoProgram1.c

Instructions for connecting to Cometa GPU Server

You must use a SSH client to connect to our server. In Linux or MacOS it is
installed by default. From a Windows system you have to download and install
an SSH client (putty or openssh).

Step for connection:

1. ssh –l guest unict-diit-ui-01.ct.pi2s2.it

• Enter ‘cometaGuest’ as password

2. ssh –l username cometa-gpu-01.consorzio-cometa.it

• ‘username’ is the login name you should have received from Cometa

• Enter the password you received

OpenCL – Platform Model API

Remember:

• 3 step to get the platforms/devices

• STEP 1: discovery quantity of platforms/devices

• STEP 2: allocation of enough space

• STEP 3: retrieval of the desired number of platforms/devices

• You can choose what device retrieve with device_type argument:

• CL_DEVICE_TYPE_CPU

• CL_DEVICE_TYPE_GPU

• CL_DEVICE_TYPE_ALL

OpenCL – Execution and Programming Model

The Execution model define two main components:

• Host program: written in C or C++, it runs on the OpenCL host. The host
program creates and queries the platform and the device attributes, defines a
context for the kernels, builds the kernels, and manages the execution of these
kernels.

• Kernels: written in OpenCL C, they are the basic units of executable code that
run on the OpenCL device. Each instance of a OpenCL kernel is executed by a
Compute Units.

OpenCL – Execution and Programming Model

On submission of the kernel by the host to the device, an N dimensional
index space is defined (N = 1 2 or 3).

The number of kernel instances is equal to the size of the index space

Each kernel instance is created at each of the coordinates of this index
space.

This instance is called as the "work item“ and the index space is called as
the NDRange. The work-items are performed by the compute units.

Work-items can be divided into smaller equally sized “work-groups”

OpenCL – Execution and Programming Model

OpenCL – Execution and Programming Model

OpenCL – Execution and Programming Model

• So for each work-item we can define two types of identifier:

• global-id: A unique global ID given to each work item in the global NDRange

• local-id: A unique local ID given to each work item within a work group

The ID is fundamental for the execution of the kernels in OpenCL

OpenCL – Execution and Programming Model

OpenCL – Execution and Programming Model
In order for the host to request that a kernel is executed on a device, a context must be
configured. It enables the host to pass commands and data to the device.

The API function to create a context is clCreateContext().

OpenCL – Execution and Programming Model

The execution model specifies that devices perform tasks based on commands which are sent from
the host to the device.

A command-queue is the communication mechanism that the host uses to request action by a
device. Once the host has decided which devices to work with and a context has been created, one
command-queue needs to be created per device. The API function clCreateCommandQueue()
(deprecated in OpenCL 2.0 and substituted by clCreateCommandQueueWithProprierties) is used to
create a command-queue.

OpenCL – Execution and Programming Model

Any API call that submits a command to a command-queue will begin with clEnqueue and
require a command-queue as a parameter.

• For example, the clEnqueueReadBuffer() call requests that the device send data to the host,
and clEnqueueNDRangeKernel() requests that a kernel is executed on the device.

In addition to API calls that submit commands to command-queues, OpenCL includes
barrier operations that can be used to synchronize execution of command-queues. The
API calls clFlush() and clFinish() are barrier operations for a command-queue.

OpenCL – Execution and Programming Model

The command put in a queue are handled through the use of events. Each command of
clEnqueue type has three parameters in common:

• a pointer to a list of events that specify dependencies for the current command called wait
list. It is used to specify dependencies for a command

• the number of events in the wait list

• a pointer to an event that will represent the execution of the current command

OpenCL – Execution and Programming Model

The OpenCL API also includes the function clWaitForEvents(), which causes the host to
wait for all events specified in the wait list to complete execution.

OpenCL – Execution and Programming Model

OpenCL source code is compiled at runtime through a series of API calls.

The process of creating a kernel from source code is as follows:

1. The OpenCL C source code is stored in a character array. If the source code is stored in a file on a
disk, it must be read into memory and stored as a character array.

• Each kernel in a program source string or file is identified by a __kernel qualifier

2. The source code is turned into a program object, cl_program, by calling
clCreateProgramWithSource().

• It’s possible to create a program from binary source with clCreateProgramWithBinary()

3. The program object is then compiled, for one or more OpenCL devices, with clBuildProgram(). If
there are compile errors, they will be reported here.

4. A kernel object, cl_kernel, is then created by calling clCreateKernel and specifying the program
object and kernel name.

The final step of obtaining a cl_kernel object is similar to obtaining an exported function from a
dynamic library.

OpenCL – Execution and Programming Model

OpenCL – Execution and Programming Model

Unlike invoking functions in C programs, we cannot simply call a kernel with a list of
arguments. Executing a kernel requires dispatching it through an enqueue function.
Owing to the syntax of C and the fact that kernel arguments are persistent (and hence we
need not repeatedly set them to construct the argument list for such a dispatch), we must
specify each kernel argument individually using clSetKernelArg().

OpenCL – Execution and Programming Model

Enqueuing a command to a device to begin kernel execution is done with a call to
clEnqueueNDRangeKernel().

OpenCL – Execution and Programming Model

OpenCL – Memory Model

To support code portability, OpenCL’s approach is to define an abstract
memory model that programmers can target when writing code and vendors
can map to their actual memory hardware.

OpenCL defines three types of memory objects: buffers, images and pipes.

OpenCL – Memory Model

OpenCL – Memory Model

OpenCL classifies memory as either host memory or device memory.

OpenCL divides device memory into four named memory regions.

These memory regions are relevant within OpenCL kernels.

• Global Memory: visible to all work-items (similarly to the main memory on a CPU-based
host system).

• Costant Memory: specifically designed for data where each element is accessed
simultaneously by all work-item. It is modelled as a part of Global Memory

• Local Memory: memory that is shared between work-items within a work-group.

• Private Memory: memory that is unique to an individual work-item.

OpenCL – Memory Model

OpenCL – Memory Model

THANK YOU FOR

YOUR ATTENTION

