Frontier Objects in Astrophysics and Particle Physics 22nd - 28th, May 2016 Vulcano Island, Sicily, Italy

LHAASO Prospects: Spectra of Cosmic Ray Species

Zhen Cao IHEP, Beijing, China

VULCANO Workshop 2016

LHAASO at Mt. Haizi, Sichuan, China N29°21'27.6", E100 ° 08'19.6", 4400 m a.s.l.

LHAASO Layout

Main Array: 5242 scintillator detectors every 15 m

1146 μ -detectors every 30 m

Č.

Water Cherenkov Detector 80,000 m²

CR Detectors: 18 Wide field View Cherenkov telescopes & Large Dynamic WCDA++:

Physics of LHAASO

- VHE gamma sky survey (100 GeV-1 PeV):
 - Galactic sources;
 - Extragalactic sources & flares;
 - VHE emission from Gamma Ray Bursts;
 - Diffused Gamma rays.

- Nature of the acceleration: leptonic or hadronic;
- Origin of cosmic rays 100 years' mystery.
- Cosmic rays
 - Spectra of CR Species;
 - Anisotropy of VHE cosmic rays;
 - Cosmic electrons / positrons;
- Miscellaneous:
 - Gamma rays from dark matter;
 - Sun storm & IMF.

Outline

- Absolute Energy Scale at 10TeV
- Cross-Calibration with Space-borne Measurements
- Separation between Species (0.1-10 PeV)
- The Knees at 0.7, 1.4, ~3 PeV
- Composition above 10 PeV & the Knee at ~18 PeV
- The second Knee of All Particle Spectrum
- Status of the project
- Summary

Aperture of LHAASO for CR events

Water Cherenkov **Detector Array**

- 3 water ponds:
 - 78,000 m² in total;
 - 4 m effective depth;
 - 3120 cells, with an 8"/9" PMT in each cell;
 - Cells are partitioned with black curtains.

WCDA++: 1"PMTs enhance Dynamic Range

50 m, 30 cells

10 m, 22 cells

ARGO-YBJ : Moon Shadow displacement

The energy scale uncertainty: smaller than 13%:

- the assumed primary CR chemical composition (7%)
- the uncertainties of different hadronic models (6%)

For LHAASO 1/4:

- Sensitivity: same after p+He selection
- Angular Resolution: 0.3°
- Pure Proton+Helium: 90% purity
- Hadronic Model: 5% (estimated)
- Overall: <10% within 1 year

Vertical events (θ <30°). The composition uncertainty is greatly suppressed.

cross-calibration between the experiments

- Aim: To bridge between space borne and ground based experiments
- CREAM: energy spectrum of single element up to 100TeV
- > ARGO-YBJ (H&He): 7TeV-200TeV
- AMS02 confirmed the energy scale

Selection for Individual Species (0.1-10 PeV)

• Multi-parameter measurement of Air Showers

Water Cherenkov Detector 22,500 m², WCDA++

WFCTA show @ Tibet

WFCTA01(97 tube trigger) WFCTA02(155 tube trigger) core 104.3 m -62.1 m; the 36.28 deg; phi 269.10 deg; ener: 799.513 TeV

	Item	Value
Muon Detector	Area	36 m²
Water Cherenkov detector	Detection efficiency	>95%
underneath soil, E _{th} ~ 1 GeV	Purity of N _µ	>95%
ø13.9m ø9m soil iron plate	Time resolutio n	<10 ns
	Dynamic range	1-10,000 particles
Ø6.8m concrete tar	Particle counting resolutio n	25% @ 1 particle 5% @ 10,000 particles
	Aging (<20%)	>10 years
	Spacing	30 m
*	number	1221

Parameters and performance

- Multi-parameter measurement of Air Showers
 - Shower energy: Air Cherenkov Telescopes
 - Shower Image Shape (p₃): Air Cherenkov Telescopes
 - Energy flux near AS core (p₁): WCDA++
 - Muon content (p_2) : Muon Detector Array
 - Remaining AS Energy (p₄): WCDA & WCDA++
- Shower Core Resolution: 3m (WCDA++)
- Shower Direction Resolution: 0.3° (WCDA)

Multi-parameter Analysis

p2 = log10(totalMuon)+0.00085*R -0.86*Npe $R=\sqrt{(recx + 15)^2 + (recy - 75)^2}$

p3 = L/W-0.018*Rp+0.287*Npe

CutA: for p+He p1>-1.28 or p2<-1.70 aperture: 12 tels contamination :Horandel model

CutA: for p p1>-1. or p2<-1.85 aperture: 12 tels

contamination :Horandel model

The other example: Cherenkov image shape vs. E-flux near the core

0.5

0

3.5

4.5

1 p3=L/W-0.018*Rp+0.287*N

experiment with 1/40 aperture

RPC array (ARGO-YBJ) & Cherenkov Telescope (LHAASO)

$$p_L = \log_{10} N_{max} - 1.44 \log_{10} N_0^{pe}$$
$$p_C = L/W - R_p/109.9m - 0.1 \log_{10} N_0^{pe}$$

J.R. Hörandel, Modern Physics Letter A, 22, 1533 (2007)

> A simple geometrical calculation gives an aperture of 163 m² sr

➤The aperture of H&He: ~120 m² sr above 300 TeV;

➤ The purity of H&He showers: ~93% below 700 TeV;

> The contamination of heavy nuclei increases with energy: 13% @ 1 PeV, gradually increases to 27% @ 3 PeV;

> The contamination of heavy nuclei is model dependent

E-reconstruction

- Systematic
 bias: <3%
- Constant resolution: 25%
- Gaussian

300 TeV

 \succ The knee of H&He spectrum at (700 \pm 230) TeV is clearly measured

- Broken power law fits data well with indices
- -2.62 \pm 0.05 and -3.58 \pm 0.50 below and above the knee

(with heavy contamination subtracted J.R. Hörandel, Modern Physics Letter A, 22, 1533 (2007)

-2.56 \pm 0.05 and -3.24 \pm 0.36 below and above the knee

(without heavy contamination subtracted)

• Below the knee, consistent with ARGO-YBJ, which is consistent with CREAM

Prospects for knees at <10 PeV

- With a factor of 40 of the aperture and at least two more parameters, LHAASO will analysis the data using neural network technique & measure
 - Pure proton spectrum with purity > 90%
 - P+He spectrum with purity > 95%

.

- Fe spectrum with purity > 70% (estimated)
- Energy Scale can be cross checked at lower energy end by the space borne experiments

3.2

The Scintillation + MD Array + WFCTA for CRs above 10 PeV

- 5195 EDs, 1 m² each, 15m spacing
- 1146 MDs, 36 m² each, 30m spacing
- 18 Telescopes

Electromagnetic Particle Detector (ED) using sacintillator plat/WS fiber/PMT

μ[±] e[±] ζγ Lead (0.5 cm) SC Tiles (2.5 cm) Steel Case

- Non-uniformity <10%
 - tiles: <5%
 - fibers: 11%/ $\sqrt{32}$
 - PMT gains: adjustable
 HV

The lateral distribution

Prospects

- AS core resolution: <3 m (EDA)
- AS arrival direction resolution: ≤0.2° (EDA)
- Trigger efficiency for E>7 PeV: >80% up to 350 m
- Energy resolution for clean Fe samples: ~15% (CT)
- E-scale: overlap with the

combined experiment of WFCTA + WCDA++

X_{max} Reconstruction

- D: angular distance between the shower
 direction and the gravity center of the image ²⁵⁰
- **D** is R_p dependent
- For events with R_p smaller than 300m, D ~ 0.4868* R_p (0< R_p <300)

Unbiased measurement to species

- Aperture: ~0.45X10⁶ m²sr
- Iron selection:
 - μ -content and X_{max} with a resolution about 50 g/cm²
 - Expected Fe event rate: 0.2M/yr with a duty cycle of 5%
- The goal: the spectrum of pure Fe or mixed heavy components and their knees

Status: Civil Construction Schedule

- Conceptual design and feasibility are approved two weeks ago
- Environment impact review is passed.
- Electrical power line construction in bidding procedure
 - 35kV power line for 29km and a transferring station 35 kV to 10 kV at site
 - 4 months to finish construction work after the company being selected in bidding
- Water cannels construction is also under bidding
- The road connecting to the main transportation high way is already built
- Sites of 1200 MD's are surveyed. The field preparation is actually started
- The deep geo-survey for WCDA pools is planned to be done in summer
 - The construction of the No.1 pool and tanks will start in **2017**

Construction and installation of muondetectors & environment protection facility

1

3

2

Summary

- Absolute Energy Scale at 10TeV could be established by using moon shadow technique
- Great opportunity for cross-calibration with spaceborne Measurements
- Separation between species can be done at energy of 0.1-10 PeV
- The Knees at 0.7, 1.4, ~3 PeV ... and 18 PeV are expected to be fixed on the individual spectra
- The schedule is fixed:
 - Civil construction is finished by April, 2017
 - Construction of No.1 pool & tanks: start around April, 2017
 - Detector installation starts by the end of 2017
 - Physics data taking in 2018 with ¼ LHAASO array

Still Energy Scale

- Calibration between C-tele and F-tele
- Calibration between TUNKA and F-tele
- Calibration between LHAASO/F-tele and other F-tele arrays?
- But not only..... muon-content is

also problematic.

Matic. Re-Configuration Tower CT: 16 µ: 1200x40m² Side Trigger CT: 2

