## **The HALO-2 Supernova Detector**

#### Vulcano Workshop 2016

#### FRONTIER OBJECTS IN ASTROPHYSICS AND PARTICLE PHYSICS









#### Outline

- Science Motivation
  - Supernovae in general
  - Lead-based detectors in particular
- Supernova Neutrinos
- Lead as a Supernova Neutrino Target
- Event Rates / kt of Lead
- The HALO Detector
- "HALO-2" at LNGS
- Status of HALO-2



#### Science Motivation - supernovae in general



- the potential to:
  - learn more about supernova dynamics
  - learn more about properties of neutrinos
  - maximize the science opportunity from the next galactic supernova by promptly alerting the astronomical community (SN Watch / SNEWS)

BUT...

- While the probability of a galactic SN *in a lifetime* are good there are issues:
  - most supernova-sensitive detectors have other primary objectives necessitating down-time; extensive calibration; reconfiguration; and end of life
- While SN emit neutrinos and anti-neutrinos of all flavours in roughly equal numbers, and valuable information is present in all channels,
  - Water Cherenkov and liquid scintillator detectors have dominant  $\overline{v}_e$  sensitivity
  - future (mega-expensive) detectors can save costs by increasing their energy threshold at the expense of their supernova capabilities – a risk

## Science Motivation - Pb-based detectors in particular

- So, with these issues in mind, it seems there's a niche for a
  - low cost
  - low maintenance
  - robust
  - long lifetime
  - dedicated supernova detector with complementary sensitivity
- Lead, as a supernova neutrino target, has a dominant v<sub>e</sub> sensitivity and some other advantages
- HALO is 79 tonnes of lead instrumented with <sup>3</sup>He neutron detectors running since May 2012 at SNOLAB
- HALO-2 is a kilo-tonne concept for LNGS being developed due to the availability of ~1 kilotonne of Pb from the decommissioning of OPERA

#### Supernova Neutrinos – First Order Expectations

- Approximate equipartition of neutrino fluxes
- Several characteristic timescales for the phases of the explosion (collapse, burst, accretion, cooling)
- Time-evolving  $v_e$ ,  $\overline{v}_e$ ,  $v_x$  luminosities reflecting aspects of SN dynamics
  - Presence of neutronization pulse
  - Hardening of spectra through accretion phase then cooling
- Fermi-Dirac thermal energy distributions characterized by a temperature,  $T_{v}$ , and pinching parameter,  $\eta_{v}$

$$\phi_{FD}(E_{\nu}) = \frac{1}{T_{\nu}^{3}F_{2}(\eta_{\nu})} \frac{E_{\nu}^{2}}{\exp\left(E_{\nu}/T_{\nu} - \eta_{\nu}\right) + 1}$$

• Hierarchy and time-evolution of average energies at the neutrinosphere

$$T(v_x) > T(\overline{v_e}) > T(v_e)$$

 v-v scattering collective effects and MSW oscillations further imprint physics on the F-D distributions

May 24, 2016







#### What is to be Learned?



#### Astrophysics

- Explosion mechanism
- Accretion process
- Black hole formation (cutoff)
- Presence of Spherical accretion shock instabilities (3D effect)
- Proto-neutron star EOS
- Microphysics and neutrino transport (neutrino temperatures and pinch parameters)
- Nucleosynthesis of heavy elements
- Particle Physics
  - Normal or Inverted neutrino mass hierarchy
  - Presence of axions, exotic physics, or extra large dimensions (cooling rate)
  - Etc.

### Lead as a Supernova Neutrino Target

- CC and NC cross-sections are the largest of any reasonable material though thresholds are high
- Neutron excess (N > Z) Pauli blocks

#### $\overline{\nu}_e + p \rightarrow e^+ + n$

- High Z increases  $\nu_{\rm e}$  CC cross-sections relative to  $\overline{\nu}_{\rm e}$  CC and NC due to Coulomb enhancement further suppressing the  $\overline{\nu}_{\rm e}$  CC channel
- Results in mainly  $\nu_{\rm e}$  sensitivity complementary to water Cerenkov and liquid scintillator detectors
- de-excitation of nucleus following CC or NC interactions is by 1n or 2n emission

#### **Other Advantages**

- High Coulomb barrier  $\rightarrow$  no ( $\alpha$ , n)
- Low neutron absorption cross-section (one of the lowest in the table of the isotopes) → a "good" medium

for moderating neutrons down to epithermal energies





- no directionality
- no direct measure of neutrino energy



#### **Comparative v-nuclear Cross-sections**



K. Scholberg, Annu. Rev. Nucl. Part. Sci. 2012. 62:81–103.

 $CC: \nu_e + {}^{208} \text{Pb} \rightarrow {}^{207}\text{Bi} + n + e^ \nu_e + {}^{208} \text{Pb} \rightarrow {}^{206}\text{Bi} + 2n + e^ NC: \nu_x + {}^{208} \text{Pb} \rightarrow {}^{207}\text{Pb} + n$  $\nu_x + {}^{208} \text{Pb} \rightarrow {}^{206}\text{Pb} + 2n$ 

Thresholds CC 1n 10.7 MeV CC 2n 18.6 MeV NC 1n 7.4 MeV NC 2n 14.4 MeV

2n cross-sections don't appear on plot but provide a handle on energy distribution



# Event Rates / kt of Lead (100% capture efficiency)



| $\langle E_{\nu_x}^0 \rangle  [\text{MeV}]$ | 13                      |             | 18                 |                                                                        |     | 25   |
|---------------------------------------------|-------------------------|-------------|--------------------|------------------------------------------------------------------------|-----|------|
| MH (and $\theta_{13}$ )                     | NMH small $\theta_{13}$ | IMH         |                    | $\begin{array}{c} \text{NMH} \\ \text{small } \theta_{13} \end{array}$ |     | IMH  |
| $\alpha_{ u_x}$                             | 7                       | 2           | 7                  | 2                                                                      | 7   | 2    |
| $N_{1n}$                                    | 90                      | <b>39</b> 0 | 2 <mark>8</mark> 5 | 300                                                                    | 225 | 570  |
| $N_{2n}$                                    | < 3                     | 150         | 30                 | 105                                                                    | 24  | 390  |
| neutrons emitted                            | $\sim 90$               | 690         | 345                | 510                                                                    | 273 | 1350 |

from Väänänen and Volpe, JCAP **1110** (2011) 019.

Table 6. Total numbers of events during the explosion (assuming 100 % detection efficiency, distance to the supernova 10 kpc and target mass 1 kton of  $^{208}\text{Pb}$ ). As in table 4 but assuming equal neutrino luminosities throughout the whole neutrino emission and the total time integrated luminosity  $3\times10^{53}$  erg.

#### Earlier work, in 1kt of lead for a SN @ 10kpc<sup>†</sup>,

- Assuming FD distribution with T=8 MeV for  $v_x$ .
- $\sim$  860 neutrons through  $\nu_e$  charged current channels
  - 380 single neutrons
  - 240 double neutrons (480 total)
- 250 neutrons through  $v_x$  neutral current channels
  - 100 single neutrons
  - 75 double neutrons (150 total)

cross-sections from Engel, McLaughlin, Volpe, Phys. Rev. D 67, 013005 (2003)

(more conservative neutrino temperatures reduce these event numbers by a factor of ~2)

#### **Sensitivity to neutrino energy**





possibility to measure neutrino temperatures and pinching parameters.  $N_{1n}$  and  $N_{2n}$  per kt from Väänänen and Volpe,  $\epsilon = JCAP \ 1110 \ (2011) \ 019 \ March \ 201$ 

ε = 40%,60%,80%

March 2012 APS, K. Scholberg.

#### HALO - a Helium and Lead Observatory



A "SN detector of opportunity" / An evolution of LAND – the Lead Astronomical Neutrino Detector, C.K. Hargrove et al., Astropart. Phys. 5 183, 1996.

"Helium" – because of the availability of the <sup>3</sup>He neutron detectors from the final phase of SNO

+

"Lead" – because of high v-Pb crosssections, low n-capture cross-sections, complementary sensitivity to water Cerenkov and liquid scintillator SN detectors

HALO is using lead blocks from a decommissioned cosmic ray monitoring station

#### **HALO at SNOLAB**





## **The HALO Collaboration**





C Bruulsema<sup>1</sup>, C A Duba<sup>2</sup>, F Duncan<sup>3,1</sup>, J Farine<sup>1</sup>, A Habig<sup>4</sup>, A Hime<sup>5</sup>, A Kielbik<sup>1</sup>, M Howe<sup>6</sup>, C Kraus<sup>1</sup>, S Luoma<sup>1</sup>, R G H Robertson<sup>7</sup>, K Scholberg<sup>8</sup>, M Schumaker<sup>1</sup>, J Secrest<sup>9</sup>, T Shantz<sup>1</sup>, J Vasel<sup>4</sup>, C J Virtue<sup>1</sup>, B von Krosigk<sup>10</sup>, R Wendell<sup>11</sup>, J F Wilkerson<sup>6</sup>, S Yen<sup>12</sup> and K Zuber<sup>10</sup>

<sup>1</sup> Laurentian University, Sudbury, ON P3E 2C6, Canada
 <sup>2</sup> Digipen Institute of Technology, Redmond, WA 98052, USA
 <sup>3</sup> SNOLAB, Sudbury, ON P3Y 1M3, Canada
 <sup>4</sup> University of Minnesota Duluth, Duluth, MN 55812 USA
 <sup>5</sup> Pacific Northwest National Laboratory, Richland, WA 99352, USA
 <sup>6</sup> University of North Carolina, Chapel Hill, NC 27599, USA
 <sup>7</sup> University of Washington, Seattle, WA 98195, USA
 <sup>8</sup> Duke University, Durham, NC 27708, USA
 <sup>9</sup> Armstrong State University, Savannah, GA 31419, USA
 <sup>10</sup> TU Dresden, D-01062 Dresden, Germany
 <sup>11</sup> ICCR, University of Tokyo, Kamioka Observatory, Japan
 <sup>12</sup> TRIUMF, Vancouver, BC V6T 2A3, Canada

Funded by:





Vulcano Workshop 2016

## **Neutron detection in HALO**

- Re-using SNO's "NCD" <sup>3</sup>He proportional counters
- 5 cm diameter x 3m and 2.5m in length, ultra-pure CVD Ni tube (600 micron wall thickness)
- 2.5 atm (85% <sup>3</sup>He, 15% CF<sub>4</sub>, by pressure)
- Four detectors with HDPE moderator tubes in each of 32 columns of lead rings
- 128 counters (~370 m) paired for 64 channels of readout
- an additional ~200m of <sup>3</sup>He proportional counters are also available







## **Neutron detection in HALO**

• Neutron detection via

#### <sup>3</sup>He + n → p + t + 764 keV

- 764 keV FE peak plus LE tail due to wall effects
- measured neutron capture efficiency ~30% volume averaged; 47% central \*\*new\*\*
- α's present at rate of ~20 events per day in ROI for the entire array
- Compton and beta events at low energies
- Background n in room at level of 4000 fast plus 4000 thermal per m<sup>2</sup> per day.
- Cosmic muons < 2 per day
- Intrinsic tritium rate (18.6 keV endpoint) above 12 keV threshold ~10 Hz / detector but running at threshold of ~50 keV for total rate of 5 Hz
- Current neutron rate in HALO is 0.015 Hz (~1300 / day)



Energy (keV)

#### **Status today**



- Full detector being read-out since May 8<sup>th</sup> 2012.
- Daily shift-taking since July 27<sup>th</sup> 2012.
- Burst trigger implemented and connected to SNEWS since October 8, 2015
- Full calibration done with and without front shielding wall April 2016
- work continues on redundant systems and monitoring tools





- the decommissioning of OPERA has made available
  - ~ 1 kilotonne of Pb for new ideas
- concepts for HALO-2 are preliminary
  - have ~500 m of <sup>3</sup>He counters (very quiet)
  - plus 120 m of <sup>10</sup>BF<sub>3</sub> counters
  - likely more is desirable and/or an alternative technology (could be less quiet if not used in trigger)
  - cosmic muon rate ~x100 higher in LNGS
    - veto might be desirable, not absolutely necessary
  - modest (water) shielding should reduce ambient neutrons to negligible level, as well as isolate and define the target volume

🗕 0.3636 m





#### **Starting Point**

- distribute all available <sup>3</sup>He detectors in a 4m x 4m x 5.5m volume of Pb
- simulate MeV neutrons in Pb
- find 1/4 capture on <sup>3</sup>He; 1/3+ capture on Pb; 1/3+ escape volume
- recall neutron capture efficiency in HALO is ~30%; so gain factor of 12 in Pb mass; lose some efficiency



Next.... add water layer as reflector

- for HALO (smaller volume; larger surface/ volume ratio) this had significant benefits
- for HALO-2 capture on Pb increases; detection on 3He ~unchanged
- needed as part of the design, in any case, to isolate from environmental neutrons and to define target volume



- not satisfied with 25% neutron capture efficiency... HALO achieved 47% in central volume so with more favourable surface/volume ratio HALO-2 should do better
- increasing density of neutron detection will increase capture efficiency / scientific reach of detector AND costs
- more <sup>3</sup>He detectors not feasible with greatly increased cost of 3He; looking towards BF<sub>3</sub> and Gd-clad plastic scintillator
- exploration with detailed simulations in progress
- backgrounds in <sup>3</sup>He counters are lower than required for setting a low threshold SN trigger → likely design feature would be a central volume of detector instrumented with <sup>3</sup>He and surrounding volume with alternative technology... to be explored



#### Insights from MC studies

- scaling with detector densities and gas pressures not quite intuitive
- choice of moderator (plastic, graphite, water, heavy water) has only weak effects on capture efficiency
- geometry matters moderating close to neutron detectors is better and allows an increase in capture efficiency over the naïve mole.barn fraction of the detectors
- fraction of neutrons escaping Pb volume is important and not greatly affected by the geometrical details interior to the volume
- finding a way to detect the escaping neutrons is likely the largest win in detection efficiency; additional detectors an expensive option; studying Gd layer and gamma catcher options





- still in the "fun" conceptual stage ~unconstrained but conscious that increasing costs diminish likelihood of realization
- expressed an interest in the OPERA lead to the LNGS Scientific Committee in April 2015
- have formed a working group with bi-weekly meetings to discuss simulations
  - 6 HALO members
  - 9 new Italians
  - 4 new Canadians
  - 4 new Americans
- made a submission to the LNGS "10 year Plan for UG Resources" exercise in February 2016
- planning to grow and transition working group to a collaboration and produce an LOI and technical design study on a 1 year timescale





## To help in the development of the LOI and TDS please contact

Clarence Virtue cjv@snolab.ca

## Thanks for your attention!