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TESTING NMC GRAVITY WITH MERCURY

Observation of Mercury orbit (MESSENGER) can be used to
constrain new theories of gravitational physics.

Nonminimally coupled (NMC) gravity is a modification of
General Relativity that has been applied to astrophysical and
cosmological problems as a possible alternative to the
standard scenario of dark matter and dark energy.

The nonrelativistic limit of NMC gravity consists of the
Newtonian potential plus a Yukawa perturbation.

Measurement of perihelion precession of Mercury orbit,
resulting from MESSENGER data, can be converted into
constraints on NMC gravity parameters.
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NONMINIMALLY COUPLED GRAVITY

 The action functional of NMC gravity is (Bertolami et al. 2007):

[l @240+ r2(R)s, |-g d*x,

* R isthe spacetime curvature, g isthe metric determinant,
£ =-—pc’is the Lagrangian density of matter, 0 is mass density.

* General Relativity (GR) is recovered by taking

F(R)=2xR. [*(R)=0, x=—C

167G
o fz(R):O corresponds to f(R) gravity theory.
. fz(R) yields the NMIC between geometry and matter.

, G = Newton's constant
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METRIC AND ENERGY-MOMENTUM TENSOR
* The metric tensor is of the form ¢, =7,  +4, |}, |<<]
1, is the Minkowski tensor; 1/c expansion of &, (as in PPN):

oo = —1+h(§(2)) +h(§g) +0(1/c%), o = héf) +0(1/¢),
g, =0; +hl.](.2) +0(1/c").
e Components of energy momentum tensor TW (as in PPN):

2
Too=pc2(1+"—2+052—hé?]+0<1/c2>, T, =—pev, +O(1/c),

C
2
I; = pvy, +p5ij +0(1/c7),

* where matter is considered as a perfect fluid with density p,
velocity v, pressure p, and specific energy density I1.
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ASSUMPTIONS ON FUNCTIONS OF CURVATURE

* We assume the functions f'(R) and f*(R) to be analytic at
R=0. Hence f' admits the Taylor expansion:

4
C

" 162G

fl(R)=2KZal.Ri, Cllzl, K
i=1
* f?admits the Taylor expansion:
f2 (R) — Zq]'Rj
j=I1

« If ¢,=0Vi>1 and ¢,=0V)/, the action of GR is recovered.

* The coefficients 4,,45,4,,9, (parameters of the NMC model)
will be used to compute the metric at the required order.
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FIELD EQUATIONS OF NMC GRAVITY

* The first variation of the action functional with respect to the
metric yields the field equations:

e 238 Ry = 118, =V i v 228, )+ (4 £2),

V.=V, V, —gﬂvg‘mVGV,7

* fi=df'/dR, £, = —,002 is the Lagrangian density of matter,
pis mass density, R isthe Riccitensor, T isthe energy-
momentum tensor, Vﬂ is the covariant derivative.

* The field equations are solved by a perturbative method.

Vulcano Workshop 2016



NONRELATIVISTIC LIMIT

* At order O(1/c?) we obtain the equations of Yukawa type:

1 4G
V?R? ——R¥ =— 69,V
6a, 3c’a, (,0 & ,0)
(-2 2 ),

e R®js curvature at order O(1/c?), a,,q, are NMC parameters.

* the solution for the 0-0 component of the metric at order
O(1/c?) is the Newtonian potential plus a Yukawa potential:

—|x=X'|/ A

d3l

2 —
hgﬁ):2%+£l—%] ~Y, Y:Gjp(z,x )
c a, )3c
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YUKAWA POTENTIAL

« h{Y isthe Newtonian potential plus a Yukawa potential:

9) . —|x=X'|/ A
B = zﬂ+(1 0)=2Y,  ¥=G[plt,¥)——d'x
3¢’

 Therange A of the Yukawa potential is

A=,/6a,
 The strength o of the Yukawa potential is

:1(1—6?), in, q,=a,=>a=0.
3 a,

Long range (astronomical) effects are possible if ¢, =z a,.
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PPNY APPROXIMATION

* The i-j components of field equations at order O(1/c?) are:

1 2

167ZG C
9,P9; j"‘ 5 é‘yR(z) +2a2R(,i2j) = ?QhO,ij

v{% h? —2a,6,R” +——

* R“@is curvature at order O(1/c?), a,,q, are NMC parameters.

e Diagonal solution after gauge transformation:

|x—F|/ A

d>x'

h? :[22_(1 e)i Y}&.. Y=G j o(t,5)>

7?2 —
5 3¢? / ‘x—x"

o="1
d,
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0-0 COMPONENT AT ORDER O(1/c%)

* The largest term of h(4)

2
B = peeror  87G e(_ 2g, + % —4%jX(p2)+

o TV

)= [P dx, o="1
\x ¥

* a,,a5,9,,9, are NMC parameters; p')=“% is the GR term;

dots ... denote the sum of further potentials; some are of type

Wzk t x Ip(t y)p(tgz).(-i:_)_})'(j}_Z)e—(f—}+y—2)/gd3yd3z

i,k ={2,3}
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METRIC AROUND A STATIC, SPHERICAL BODY

* Uniform density is assumed (M., R.: mass, radius of the body):

2 2(GM, Y
=1+ 20O a2 P RO,

g = {1+;[U(r)—aY(r)]}@j

 U(r)is the Newtonian potential, Y(r) is the Yukawa potential;
F(r) is a further potential depending on exponential functions.

The largest term in the Yukawa strength o for A>>R is

2
a=2(1-0)+ s g e(ﬁ—lj—gv A
3 R, 2 3 |\ R,

Qzﬁ, yzﬁ v:q—g, A=,/6a,

a, a, a,
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DEVIATION FROM GEODESICS

* The energy-momentum tensor is not covariantly conserved:

Sx (o, uv y -
Ir_(grve TN R=0 if f, 20,

V T =
# 1+ 7,

* Consequently, the trajectories deviate from geodesics:

d’x” e dx" dx" fa

- = “P0 4R.
ds’ “Tds ds 1+f2g /

Moreover, geodesics are different with respect to GR.
 Computation of the orbit of a planet around the Sun when

A>>L,
L = semilatus rectum of the unperturbed orbit.
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PERIHELION PRECESSION

* Largest term in formula for perihelion precession of a planet:

67GM, LY .
o, =T s (1-0f 2 L] e

Lc’

3
+1-0)"Ms 39(——1) 2v (1—£j 0
3Lc? 2 A R
9:&,/1:— 1%

q _ o o
° = :a_g,g:1/6a2, M;,R.,L=mass, radius, semilatus rectum
2 2 2

a,

* The first row contains the GR precession + Yukawa precession;
the second row contains the NMIC relativistic correction;

dots ... correspond to contribution from further potentials.
Constraints on 4,,4;,4,,9, from observation of Mercury orbit.
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CONSTRAINTS FROM MERCURY OBSERVATION

* Prediction of perihelion precession assuming a PPN metric:

}fPN: 2(1+7)_ﬂ+3><103']2 67Z-Gj2\4S
3 Lc

7, fare PPN parameters, J, is the quadrupole moment of the Sun

* (Cassini bound on yand bound on £ from fits to planetary data
including data from MESSENGER (Fienga et al., 2011) yield

y—1=(2.1£2.3)x107, B—1=(-4.1£7.8)x107°
 We assume that the additional perihelion precession due to
NMC deviations from GR is given by
~5.8753x107* < %, —42.98'"'< 2.96631x10™

Formula for o¢,then yields exclusion plots for NMC parameters:

=D %, 4 L

a,

20 V= 20
2 a,
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EXCLUSION PLOTS IN THE PLANE (&, v)
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Left: A=50L, 8-1={10713,2x1013,10*%} (light, medium, dark grey)
Right: A=50L, 6-1={1019,2x1019,10°} (light, medium, dark grey)
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EXCLUSION PLOTS IN PLANES (6 v) AND (6 1)
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EXCLUSION PLOTS IN PLANES (4,8) AND (4, v)
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