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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-

20

10�1 1 10 102 103
10�2

10�1

1

10

102

E in GeV

dN
�dlnE

WT at M ⇥ 3000 GeV

10�1 1 10 102 103
10�2

10�1

1

10

102

E in GeV

dN
�dlnE

WL at M ⇥ 3000 GeV

10�1 1 10 102 103
10�3

10�2

10�1

1

10

E in GeV

dN
�dlnE

eL at M ⇥ 3000 GeV

10�1 1 10 102 103
10�3

10�2

10�1

1

10

E in GeV

dN
�dlnE

⇤L at M ⇥ 3000 GeV

10�1 1 10 102 103
10�3

10�2

10�1

1

10

E in GeV

dN
�dlnE

⇤e at M ⇥ 3000 GeV

10�1 1 10 102 103
10�3

10�2

10�1

1

10

E in GeV

dN
�dlnE

⇤ at M ⇥ 3000 GeV

Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Critical review of the MDM framework
MDM: Well motivated model with EW interactions: stability of DM ensured by accidental symmetry 

Main added value features:

    compare different MCs

    include EW corrections

    improved         propagation

    improved ICS    -ray computation
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You want to compute all signatures of your DM model in 
positrons, electrons, neutrinos, gamma rays...
but you don’t want to mess around with astrophysics?
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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New MDM candidates with small millicharge
Driven by the same spirit of minimality: stability is protected at all order in EFT expansion

Main added value features:

    compare different MCs

    include EW corrections

    improved         propagation

    improved ICS    -ray computation
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positrons, electrons, neutrinos, gamma rays...
but you don’t want to mess around with astrophysics?
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Phenomenology of the MDM 5plet with Y=0
EW multiplets predict large annihilation XS into gamma-ray lines due to NP Sommerfeld corrections



Dark Side: Overview
Precise measurements on CMB, BBN, LSS, etc...

Planck reveals an almost perfect Universe

Dark Sector: �DM + �� = 0.95

�tot = �� + �M + �Rad ' 1 �M = �b + �DM

�Rad ⇠ 10�5 �� ' 0.68
�b ' 0.05 �DM ' 0.27



DM Open Questions
There are compelling and strong evidences of non-baryonic matter 

in the Universe; from galactic to cosmological scale

BUT !! 
The microphysics of this new kind of matter is unknown yet

DM candidate: axions, wino, MDM, wimpzillas, primordial BH, etc…

Main added value features:

    compare different MCs

    include EW corrections

    improved         propagation

    improved ICS    -ray computation
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall

13

10�18
10�17
10�16
10�15
10�14
10�13
10�12
10�11
10�10
10�9
10�8
10�7
10�6

En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�GeV⇧

se
c⇥

Thomson approx
at the Earth

Ea
rth

Ga
l c
ent
er
r ⇥
0 k
pc

Ga
l e
dg
e r
⇥
20
kp
c

10�1 1 10 102 103 104 105
10�17

10�16

10�15

10�14

e⇤ energy E �GeV⇥En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�1⇧sec

⇥

E2 b⇤E⌅
Earth

Gal center r ⇥ 0 kpc

Gal edge r ⇥ 20 kpc

10�18
10�17
10�16
10�15
10�14
10�13
10�12
10�11
10�10
10�9
10�8
10�7
10�6

En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�GeV⇧

se
c⇥

Thomson approx
at the Earth

Ea
rth

Ga
l e
dg
e z
⇥
15
kp
c

10�1 1 10 102 103 104 105

10�17

10�16

10�15

e⇤ energy E �GeV⇥En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�1⇧sec

⇥

E2 b⇤E⌅
Earth

1 kpc4 kpc

Gal edge z ⇥ 15 kpc

Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Stability of DM
Stability may be explained in terms of symmetries

Most of DM models use this mechanism: (e.g. supersymmetric models)

Hope: Can this symmetry be justified in a UV completions of the model ?
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).

15

This mechanism already exist in nature: B & L conservation in the SM

Accidental symmetries: gift of the specific matter content of the model
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).

15

The scalar eptaplet (1,7,0) with Y=0 is no longer a viable DM candidate!!  
It decays very quickly due to previously overlooked dim. 5 operator

NO !!

see e.g.   arXiv:1504.00359 
   arXiv:1512.05353

O5d ⌘ �3H†H
for

⌧7plet ⇠ 1 s
⇤ = mP



 MDM candidates with Y=ε: “Millicharge or decay:  A critical take on Minimal Dark Matter”,  arXiv: 1512.05353

New class of MDM candidates with Y=ε
Results:

Millicharged MDM

The Requirement Y=0 is not mandatory

multiplets must be odd under SU(2) 
To avoid tree-level coupling with Z 



 MDM candidates with Y=ε: “Millicharge or decay:  A critical take on Minimal Dark Matter”,  arXiv: 1512.05353

New class of MDM candidates with Y=ε
Results:

Millicharged MDM

� ��
��-��
��-��
��-�
��-�
��-�
��-�
��-�
��-�
��-�
��-�
��-�

�� ���� �� ���

�
���
��
��
��
�

ϵ
��
��
��
���
���
�

���

����� ��������

Allowed

Allowed

Bounds on the millicharge 
The Requirement Y=0 is not mandatory

multiplets must be odd under SU(2) 
To avoid tree-level coupling with Z 

But!! 
they can have a small millicharge (Y=ε)



 MDM candidates with Y=ε: “Millicharge or decay:  A critical take on Minimal Dark Matter”,  arXiv: 1512.05353

New class of MDM candidates with Y=ε
Results:

Main added value features:

    compare different MCs

    include EW corrections

    improved         propagation

    improved ICS    -ray computation

Advertisement
You want to compute all signatures of your DM model in 
positrons, electrons, neutrinos, gamma rays...
but you don’t want to mess around with astrophysics?

www.marcocirelli.net/PPPC4DMID.html

Ciafaloni, Riotto et al., 1009.0224

e±

�

10�7 10�6 10�5 10�4 10�3 10�2 10�1 1
10�4

10�3

10�2

10�1

1

10

102

x ⇥ K�MDM

dN
�dlogx

DM DM ⇤ qq at MDM ⇥ 1 TeV

10�7 10�6 10�5 10�4 10�3 10�2 10�1 1
10�4

10�3

10�2

10�1

1

10

102

x ⇥ K�MDM

dN
�dlogx

DM DM ⇤ gg at MDM ⇥ 1 TeV

10⇥7 10⇥6 10⇥5 10⇥4 10⇥3 10⇥2 10⇥1 1
10⇥4

10⇥3

10⇥2

10⇥1

1

10

102

x ⇤ K�MDM

dN
�dlogx

DM DM ⇧ ⌅�⌅⇥ at MDM ⇤ 1 TeV

10⇥7 10⇥6 10⇥5 10⇥4 10⇥3 10⇥2 10⇥1 1
10⇥4

10⇥3

10⇥2

10⇥1

1

10

102

x ⇤ K�MDM

dN
�dlogx

DM DM ⌅W�W⇥ at MDM ⇤ 1 TeV

Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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New class of MDM candidates with Y=ε
Results:

Main added value features:

    compare different MCs

    include EW corrections

    improved         propagation

    improved ICS    -ray computation
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You want to compute all signatures of your DM model in 
positrons, electrons, neutrinos, gamma rays...
but you don’t want to mess around with astrophysics?
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Results:Main added value features:

    compare different MCs

    include EW corrections

    improved         propagation

    improved ICS    -ray computation
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-

20

10�1 1 10 102 103
10�2

10�1

1

10

102

E in GeV

dN
�dlnE

WT at M ⇥ 3000 GeV

10�1 1 10 102 103
10�2

10�1

1

10

102

E in GeV

dN
�dlnE

WL at M ⇥ 3000 GeV

10�1 1 10 102 103
10�3

10�2

10�1

1

10

E in GeV

dN
�dlnE

eL at M ⇥ 3000 GeV

10�1 1 10 102 103
10�3

10�2

10�1

1

10

E in GeV

dN
�dlnE

⇤L at M ⇥ 3000 GeV

10�1 1 10 102 103
10�3

10�2

10�1

1

10

E in GeV

dN
�dlnE

⇤e at M ⇥ 3000 GeV

10�1 1 10 102 103
10�3

10�2

10�1

1

10

E in GeV

dN
�dlnE

⇤ at M ⇥ 3000 GeV

Figure 3: Comparison between spectra with (continuous lines) and without EW corrections
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New MDM odd multiplets under SU(2) with Y=ε: (1,n,ε)
“Millicharge or decay:  A critical take on Minimal Dark Matter”,  arXiv: 1512.05353

- SM gauge couplings and mediators 
- the MASS is the only free parameter of the model

          can be determined by demanding that          is thermally produced

The ann. XS can be fully determined considering NP Sommerfeld corrections

�(0,✏)MDM
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall

13

10�18
10�17
10�16
10�15
10�14
10�13
10�12
10�11
10�10
10�9
10�8
10�7
10�6

En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�GeV⇧

se
c⇥

Thomson approx
at the Earth

Ea
rth

Ga
l c
ent
er
r ⇥
0 k
pc

Ga
l e
dg
e r
⇥
20
kp
c

10�1 1 10 102 103 104 105
10�17

10�16

10�15

10�14

e⇤ energy E �GeV⇥En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�1⇧sec

⇥

E2 b⇤E⌅
Earth

Gal center r ⇥ 0 kpc

Gal edge r ⇥ 20 kpc

10�18
10�17
10�16
10�15
10�14
10�13
10�12
10�11
10�10
10�9
10�8
10�7
10�6

En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�GeV⇧

se
c⇥

Thomson approx
at the Earth

Ea
rth

Ga
l e
dg
e z
⇥
15
kp
c

10�1 1 10 102 103 104 105

10�17

10�16

10�15

e⇤ energy E �GeV⇥En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�1⇧sec

⇥

E2 b⇤E⌅
Earth

1 kpc4 kpc

Gal edge z ⇥ 15 kpc

Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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The neutral component of the 5plet  
with Y=0 has a mass of 9.4 TeV

Sommerfeld corrections (solid lines)
all the possible          co-annihilations�↵��
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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production at colliders

NO HOPE to reach the thermal mass of 9.4 TeV
(even with a 100 TeV collider)

See e.g.: arXiv: 1407.7058  
- EW multiplets at colliders
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MDM 5plet

Scattering XS

Main added value features:

    compare different MCs

    include EW corrections

    improved         propagation

    improved ICS    -ray computation
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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NO HOPE to reach the predicted value of the SI 
scattering cross section (perhaps with LZ !!)

The MDM 5plet has Y=0                No tree-level couplings with the Z

Direct Detection

c0 c0
c±

W

q q
h

c0 c0
c±

W W

q q
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= 1.9⇥ 10�46cm2 �3plet
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= 2.3⇥ 10�47cm2

full NLO in ↵S , O(50%) uncertainties [largest error from charm content of nucleon]
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Hisano et al. 1504.00915 :                                               NLO in                    uncertainty↵s, O(50%)
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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γ-Ray Test of Minimal Dark Matter
- γ-Ray Continuum:

- γ-Ray Lines:

- Constraints from the measurements of the Gal. diffuse emission by Fermi
- Constraints from the observations of dSphs by Fermi, H.E.S.S. & MAGIC

- Constraints from the observations of the Gal. center by H.E.S.S.
- Only available constraint from the observation of Segue 1 by MAGIC

based on: M. Cirelli, T. Hambye, P. Panci, F. Sala, M. Taoso, JCAP 1510 (2015) 10, 026
similar work: C. Garcia-Cely, A. Ibarra, A.S. Lamperstorfer, M.H.G. Tytgat,  [arXiv:1507.05536] 



- at low velocity -> NR attractive potential 
- the Sommerfeld saturates for 

XS Predictions
Electroweak multiplets in the (�) sky

Sommerfeld enhancement

at low velocities non-rel. attractive potential

Milky Way v ⇠ 10�3c

Dwarf spheroidals v ⇠ 1÷ 5⇥ 10�5c

�0�0 ! WW , �� �v saturates at v . 10�2 !

p̄, e+, ⌫, �, ... � ray lines: smaller cross-sections

but features in � spectrum enhance sensitivities
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Important ingredient:Main added value features:

    compare different MCs

    include EW corrections

    improved         propagation

    improved ICS    -ray computation
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall

13

10�18
10�17
10�16
10�15
10�14
10�13
10�12
10�11
10�10
10�9
10�8
10�7
10�6

En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�GeV⇧

se
c⇥

Thomson approx
at the Earth

Ea
rth

Ga
l c
ent
er
r ⇥
0 k
pc

Ga
l e
dg
e r
⇥
20
kp
c

10�1 1 10 102 103 104 105
10�17

10�16

10�15

10�14

e⇤ energy E �GeV⇥En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�1⇧sec

⇥

E2 b⇤E⌅
Earth

Gal center r ⇥ 0 kpc

Gal edge r ⇥ 20 kpc

10�18
10�17
10�16
10�15
10�14
10�13
10�12
10�11
10�10
10�9
10�8
10�7
10�6

En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�GeV⇧

se
c⇥

Thomson approx
at the Earth

Ea
rth

Ga
l e
dg
e z
⇥
15
kp
c

10�1 1 10 102 103 104 105

10�17

10�16

10�15

e⇤ energy E �GeV⇥En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�1⇧sec

⇥

E2 b⇤E⌅
Earth

1 kpc4 kpc

Gal edge z ⇥ 15 kpc

Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall

13

10�18
10�17
10�16
10�15
10�14
10�13
10�12
10�11
10�10
10�9
10�8
10�7
10�6

En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�GeV⇧

se
c⇥

Thomson approx
at the Earth

Ea
rth

Ga
l c
ent
er
r ⇥
0 k
pc

Ga
l e
dg
e r
⇥
20
kp
c

10�1 1 10 102 103 104 105
10�17

10�16

10�15

10�14

e⇤ energy E �GeV⇥En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�1⇧sec

⇥

E2 b⇤E⌅
Earth

Gal center r ⇥ 0 kpc

Gal edge r ⇥ 20 kpc

10�18
10�17
10�16
10�15
10�14
10�13
10�12
10�11
10�10
10�9
10�8
10�7
10�6

En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�GeV⇧

se
c⇥

Thomson approx
at the Earth

Ea
rth

Ga
l e
dg
e z
⇥
15
kp
c

10�1 1 10 102 103 104 105

10�17

10�16

10�15

e⇤ energy E �GeV⇥En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�1⇧sec

⇥

E2 b⇤E⌅
Earth

1 kpc4 kpc

Gal edge z ⇥ 15 kpc

Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
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where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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we divide the sky in 35 non-overlapping regions
in each region, we model the diffuse bkg. considering several components:

i) a template for the Gal. diffuse emission produced by charged CR
ii) a template for point-like sources
iii) a template for the so-called “Fermi bubbles”
iv) the isotropic γ-ray bkg.

Constraints from the measurement of the Gal. diffuse emission 
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall

13

10�18
10�17
10�16
10�15
10�14
10�13
10�12
10�11
10�10
10�9
10�8
10�7
10�6

En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�GeV⇧

se
c⇥

Thomson approx
at the Earth

Ea
rth

Ga
l c
ent
er
r ⇥
0 k
pc

Ga
l e
dg
e r
⇥
20
kp
c

10�1 1 10 102 103 104 105
10�17

10�16

10�15

10�14

e⇤ energy E �GeV⇥En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�1⇧sec

⇥

E2 b⇤E⌅
Earth

Gal center r ⇥ 0 kpc

Gal edge r ⇥ 20 kpc

10�18
10�17
10�16
10�15
10�14
10�13
10�12
10�11
10�10
10�9
10�8
10�7
10�6

En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�GeV⇧

se
c⇥

Thomson approx
at the Earth

Ea
rth

Ga
l e
dg
e z
⇥
15
kp
c

10�1 1 10 102 103 104 105

10�17

10�16

10�15

e⇤ energy E �GeV⇥En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�1⇧sec

⇥

E2 b⇤E⌅
Earth

1 kpc4 kpc

Gal edge z ⇥ 15 kpc

Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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we divide the sky in 35 non-overlapping regions
in each region, we model the diffuse bkg. considering several components:

i) a template for the Gal. diffuse emission produced by charged CR
ii) a template for point-like sources
iii) a template for the so-called “Fermi bubbles”
iv) the isotropic γ-ray bkg.
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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we divide the sky in 35 non-overlapping regions
in each region, we model the diffuse bkg. considering several components:

i) a template for the Gal. diffuse emission produced by charged CR
ii) a template for point-like sources
iii) a template for the so-called “Fermi bubbles”
iv) the isotropic γ-ray bkg.
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dSph galaxies are probably the cleanest laboratory for looking at DM signals

γ Continuum: dSphs
- high Dark Matter content 
- low stellar foreground emission this is why they are good target !!
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- low stellar foreground emission this is why they are good target !!

Fermi: staking analysis of 15 dSphs
HESS: a subset of 4 dSphs + Sagittarius
MAGIC: only Segue 1
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� continuum from dwarf spheroidal galaxies

A primer on dwarf spheroidal galaxies

⇧ gravitationally linked to our galaxy

⇧ DM dominated objects ! this is why they are good targets!

⇧ often “trackers” are just a few ! big uncertainties on DM properties

[with respect to Milky Way: almost no bkg, large uncertainties in J factors]

FERMI: 15 dwarves, assumes �J < 40%

HESS: subset of 4, plus Sagittarius

MAGIC: only Segue1 (large uncertainties!)

Bonnivard et al 1504.02048
Filippo Sala CEA/Saclay � rays from heavy WIMP Dark Matter 12 / 15

- high Dark Matter content 
- low stellar foreground emission this is why they are good target !!

The J-factors & statistical errors in Bonnivard et al. are quite  
different with respect to those used by the exp. collaborations 

Fermi: staking analysis of 15 dSphs
HESS: a subset of 4 dSphs + Sagittarius
MAGIC: only Segue 1



γ lines: GC & dSphs
The MDM 5plet has large cross sections into γγ and γΖ
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HESS Bound: from a RoI with an aperture of 0.1° -> Large uncertainties

HESS: 112h observations of the GC 
Fermi: threshold below      -> No boundM�

The MDM 5plet has large cross sections into γγ and γΖ
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- quantify the statistical & systematical errors in the determination of J 
- point the currently operating & upcoming IACTs towards the best dSph
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The MDM 5plet has large cross sections into γγ and γΖ
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100h CTA sensitivity: dSphs
EW Multiplets have large cross sections into γγ and γΖ
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Bottom Line: with 100h of observations by CTA towards Reticulum II 
the parameter space of well motivated EW multiplets can be probed

based on: V. Lefranc, E. Moulin, P. Panci, F. Sala, J. Silk, in preparation
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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    compare different MCs
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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New MDM candidates with small millicharge
The scalar eptaplet is no longer a good MDM candidate: it decays very quickly due to 5 dim. operator

One can have very heavy WIMP absolutely stable: a C.scalar 9plet can have a mass of 25 TeV
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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