HEAVY QUARK SPECTROSCOPY AT LHCB

Daniel Johnson on behalf of the LHCb collaboration

Les Rencontres de Physique de La Vallée d'Aoste La Thuile, March 6-12, 2016

Hadronisation of heavy quarks

exotic multi-quark states

The charmonium spectrum

• $m_c \approx 1.5 \ GeV/c^2 > \Lambda_{QCD} \Rightarrow c\overline{c} \text{ bound states described with simple potential}$ • approximately coulomb-potential (single gluon exchange)

• linearly increasing potential (confinement)

• Below $D\overline{D}$ threshold:

• observed states quite well-modelled

- Above $D\overline{D}$ threshold:
 - only a few predicted states observed

 - assignments of many in question
 "X,Y,Z" (not simple qq) states observed

Hadronisation of heavy quarks interpreting exotic multi-quark states

Overview

Probing X(3872) composition Studying the Z(4430) Pentaquark observation

the LHCb experiment

the LHCb experiment

the LHCb experiment

IP resolution: 20µm

RICH detectors:

 K/π separation

Efficient hadronic trigger through Run I (2011-2012)

- LHC: pp bunch-crossings [11 MHz]
- Hardware: HCAL, muon information [| MHz]
- Software (1/2): I track with pT>1.7 GeV/c [O(10) kHz]
- Software (2/2): topological (displaced vertex) [O(1) kHz]

Overview

Probing X(3872) composition Studying the Z(4430) Pentaquark observation

- First observed by Belle in 2003 $B \rightarrow K(X \rightarrow J/\psi \pi^+\pi^-)$ PRL 91 262001 hep-ex/030903
 - mass 3872 MeV/c², very narrow width O(MeV)
 - seen at 7 experiments

- Conventional charmonium?
 - $X \rightarrow J/\psi \rho/\omega$ decays violate isospin
 - $c\overline{c}$ not expected to have large branching fraction to $(J/\psi \rho)$

Alternative interpretation?
 molecule: Intriguing mass≈m(D⁰) + m(D^{*0}) ^{PLB 598 197}
 _{hep-ph/0406080}
 tetraquark: Expect a second state separated by ~8MeV/c²

hep-ph/0411122

PRD 71 014028 hep-ph/0412098

arXiv:0907.2683

• hybrid ccg, vector glueball... or admixture of the above PI B 612 1 PLB 605 306 PRD 80 056002

Daniel Johnson, La Thuile, March 6-12, 2016

hep-ph/0410264

Probing X(3872) composition Quantum number determination

PRL 98 132002 • CDF: $J^{PC} = \{1^{++} \text{ or } 2^{-+}\}$ • angular analysis of $X(3872) \rightarrow J/\psi \pi^+\pi^-$ (2,300 inclusively reco'd) hep-ex/0612053

PRL 110 222001

arXiv:1302.6269

- LHCb: $J^{PC} = 1^{++} (1fb^{-1})$ 5D angular analysis of 300 B⁺ $\rightarrow K^+X(3872)$ candidates
 - assumes lowest angular momentum for $J/\psi\pi\pi$ system reasonable given low $X \rightarrow J/\psi\pi\pi$ Q-value

 - could be violated by unconventional internal X structure

Quantum number determination

- Fit the data for different J^{PC}
 minimum log-likelihood fit
 - •X(3872) L, S values encoded in the helicity couplings via " B_{LS} "
- *Likelihood-ratio for alt. J^{PC}* 1⁺⁺ consistent and preferred

 - simulate test statistic...
 - ... alternatives excluded at > 16 s.d.
- *Limit on D-wave* • $J^{PC} = 1^{++} : L, S = 0, 1; 2, 1; 2, 2$ • *D*-wave fraction < 4% @ 95% C.L.
- Implications
 large S-wave suggests compact state
 D-wave favours extended structure

- Radiative transitions are a sensitive probe of exotic structure
 E-M transitions amongst charmonium states well-defined

 - potential models provide precise predictions
- PRD 74 071101 • Searching for $X(3872) \rightarrow J/\psi \gamma$ • evidence from BaBar in 2006: 19 candidates • constrained C-parity to be even

Radiative decays

- LHCb: $3fb^{-1}$ • search for $B^+ \rightarrow K^+(X \rightarrow \psi \gamma)$
 - 600 $X \rightarrow J/\psi\gamma$, 40 $X \rightarrow \psi(2S)\gamma$
- Measure:

 $R_{\psi\gamma} = \frac{N_{\psi(2\mathrm{S})}}{N_{\mathrm{J/\psi}}} \times \frac{\varepsilon_{\mathrm{J/\psi}}}{\varepsilon_{\psi(2\mathrm{S})}} \times \frac{\mathcal{B}(\mathrm{J/\psi} \to \mu^+\mu^-)}{\mathcal{B}(\psi(2\mathrm{S}) \to \mu^+\mu^-)},$

- main uncertainties:
 - fit model
 - photon reconstruction

• $R_{\psi\gamma} = 2.46 \pm 0.64 \pm 0.29$ arXiv:1404.0275 • compatible with B-factories but more precise • contradicts pure-molecule predictions

•X(3872) is charmonium(+molecule)?

Daniel Johnson, La Thuile, March 6-12, 2016

 $Candidates/(10 \, {
m MeV}/c^2)$

 $Candidates/(10 \, {\rm MeV}/c^2)$

14

Overview

Probing X(3872) composition Studying the Z(4430) Pentaquark observation

LHCb analysis

- LHCb study: $3fb^{-1}$ 10 times larger data sample than previous Z(4430) study 25,000 B⁺ $\rightarrow K^+\psi(2S)\pi^-$ candidates
- Two analysis approaches
 mod. indep.: Kπ Legendre moments
 mod. dep.: 4D amplitude fit

• Efficiency

PRL 112 222002 arXiv:1404.1903

Moments analysis

- Can the Z(4430) be explained by K* reflections?
 sideband subtract and efficiency correct B⁺→K⁺ψ(2S)π⁻ sample
 project m_{Kπ} angular structure using Legendre moments of cosθ_{K*}
 reflect moments into m_{ψπ} using weighted B⁺→K⁺ψ(2S)π⁻ simulation

• K* reflections provide inadequate description of the Z(4430) region Daniel Johnson, La Thuile, March 6-12, 2016

Amplitude analysis

- isobar formalism
- consider all known neutral K^{*0} resonances
 - $K^{*0}(800)$ up to $K^{*}_{3}(1780)$

 - fix all masses and widths...
 except K*(892) & K*₂(1430) widths...
 - and $K^*(800)$ mass and width
- non-resonant term included, J=0
 alternative model with LASS parameterisation

• Structure

- clearly not described by K* reflections
- deficiencies emphasised in the "K* veto" region well described by a $J^P = 1^+ Z(4430)$

PRL 112 222002 CERN arXiv:1404.1903

Amplitude analysis

- Z(4430) resonance J^{P}
 - compare delta-log likelihood J^P 1⁺ vs 0⁻
 pseudoexperiments using data-fit with either
 strongly exclude 0⁻ hypothesis »5σ

- Z(4430) resonance character
 additional fit where represent Z amplitude with complex parameters in 6 m_{ψπ-} bins
 plot resulting Argand diagram

 - phase rotation as expected for Breit-Wigner resonance

20

Overview

Probing X(3872) composition Studying the Z(4430) Pentaquark observation

Introduction

Daniel Johnson, La Thuile, March 6-12, 2016

6

5

4

 m_{Kp}^2 [GeV²]

3

2

PRL 115 072001 arXiv:1507.03414

CERN

Unexpected structure

- Alternative explanations
 efficiencies vary smoothly

 - specific veto for $B_s \rightarrow J/\psi KK$ and $B^0 \rightarrow J/\psi K\pi$ ghost- and clone-tracks are removed

 - is it a Λ^* reflection?

- Tried:
 - floating masses and widths

 - adding further Λ states
 adding non-resonant term/Σ*

Daniel Johnson, La Thuile, March 6-12, 2016

CERN

Daniel Johnson, La Thuile, March 6-12, 2016

Summary:

•X(3872)

quantum numbers confirmed 1⁺⁺
radiative transition disfavours D*D molecule

•Z(4430)

confirmation of state and resonant behaviour
 quantum number confirmed 1⁺

• Pentaquarks

two new ccuud states observed
evidence of resonant behaviour
more data needed to confirm quantum numbers

•*Run 2 re-starts soon!*