Jet searches with ATLAS: first results in Run 2

Lene Bryngemark, for the ATLAS Collaboration

March 10, 2016

intro

ratios of LHC parton luminosities: 13 TeV / 8 TeV

WJS2013

Why jets, and why now?

LHC Run2 = energy upgrade: $\sqrt{s} = 8
ightarrow 13 \ {
m TeV}$

- Hadron collider: processes couple to partons
- Access to energy frontier
 - highest mass reach
 - smallest scales

100

MSTW2008NLO

All info here

Some recent results involving jets

Search for	Reference	Int. luminosity
new phenomena in dijet mass and angular distributions from pp	PLB 754 (2016)	3.6/fb
collisions at $\sqrt{s}=13$ TeV with the ATLAS detector	302-322	
strong gravity in multijet final states produced in pp collisions at	arxiv:1512.02586	3.6/fb
$\sqrt{s}=13$ TeV using the ATLAS detector at the LHC	(JHEP)	
new phenomena with photon+jet events in proton-proton colli-	arxiv:1512.05910	3.2/fb
sions at $\sqrt{s}=13$ TeV with the ATLAS detector	(JHEP)	
diboson resonances in the $vvqq$ final state in pp collisions at	ATLAS-CONF-	3.2/fb
$\sqrt{s}=13$ TeV with the ATLAS detector	2015-068	
diboson resonances in the $\ell\ell qq$ final state in pp collisions at	ATLAS-CONF-	3.2/fb
$\sqrt{s}=13$ TeV with the ATLAS detector	2015-071	
resonances with boson-tagged jets in 3.2/fb of pp collisions at	ATLAS-CONF-	3.2/fb
$\sqrt{s}=13$ TeV collected with the ATLAS detector	2015-073	
new resonances decaying to a W or Z boson and a Higgs boson in	ATLAS-CONF-	3.2/fb
the $\ell\ell bb$, $\ell\nu bb$, and $\nu\nu bb$ channels in pp collisions at $\sqrt{s} = 13$ TeV	2015-074	
with the ATLAS detector		
WW/WZ resonance production in the $\ell v q q$ final state at $\sqrt{s}=13$	ATLAS-CONF-	3.2/fb
TeV with the ATLAS detector at the LHC	2015-075	
dark matter produced in association with a hadronically decay-	ATLAS-CONF-	3.2/fb
ing vector boson in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS	2015-080	
detector at the LHC		
TeV-scale gravity signatures in high-mass final states with leptons	ATLAS-CONF-	80/pb
and jets with the ATLAS detector at $\sqrt{s}=13$ TeV	2015-046	

\Rightarrow Jets are everywhere!

L Bryngemark (Lund University)

Jet searches with ATLAS: first results in Run 2

conclusions

backup

Understanding jets

Jet conditions very similar between Run 1 and 2

- MC-based calibration. validated in situ using $p_{\rm T}$ balance with reference objects
- Cover 2 orders of magnitude in p_T
- Different beam and detector conditions in 2015, mostly affect low $p_{\rm T}$
- Small differences at high p_T predominantely jet punch-through

 \Rightarrow based on Run 1 experience, we can do jets with early 2015 data!

> Plots available here March 10, 2016

conclusions

All info here

Results discussed in this talk

Search for...

	Reference	final state
new phenomena in dijet mass and angular distributions from pp collisions at $\sqrt{s}=13~{\rm TeV}$ with the ATLAS detector	PLB 754 (2016) 302-322	jets
strong gravity in multijet final states produced in pp collisions at $\sqrt{s}=13~{\rm TeV}$ using the ATLAS detector at the LHC	arxiv:1512.02586 (JHEP)	more jets
new phenomena with ${\rm photon+jet}$ events in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector	arxiv:1512.05910 (JHEP)	something more than jets
new resonances in events with one lepton and missing transverse momentum in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector diboson resonances in the νvqq final state in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector diboson resonances in the $\ell\ell qq$ final state in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector resonances with boson-tagged jets in of pp collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector new resonances caying to a W or Z boson and a Higgs boson in the $\ell\ell bb$, $\ell\nu bb$, and $\nu\nu bb$ channels in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector	ATLAS-CONF- 2015-063 ATLAS-CONF- 2015-068 ATLAS-CONF- 2015-071 ATLAS-CONF- 2015-073 ATLAS-CONF- 2015-075 ATLAS-CONF- 2015-080 ATLAS-CONF- 2015-080	

Jet searches with ATLAS: first results in Run 2

Common logic (dijet example)

- The invariant mass of outgoing objects probes the scale of the process
- No new scales in SM (smooth)

Run: 280464 Event: 478442529 2015-09-27 22:09:07 CEST

Dijets

Run: 280464 Event: 478442529 2015-09-27 22:09:07 CEST

Dijets

Analysis idea: form a dijet from the two highest $p_{\rm T}$ jets

- measure the dijet invariant mass, compare to smooth fit
- measure the angular distribution, compare to SM prediction from simulation

Run: 280464 Event: 478442529 2015-09-27 22:09:07 CEST

Dijets

Analysis idea: form a dijet from the two highest $p_{\rm T}$ jets

- measure the dijet invariant mass, compare to smooth fit
 ⇒ resonance search with smaller uncertainties
- measure the angular distribution, compare to SM prediction from simulation
 - \Rightarrow sensitivity to wider range of phenomena

large Δy : more QCD-like

$$y = \ln(\frac{E+p_z}{E-p_z})$$
$$y^* = \frac{y_1 - y_2}{2}$$
$$\chi = e^{2|y^*|} = e^{|\Delta y|}$$

small Δy : more BSM-like

- The distribution in χ (or y*): isotropy measure
 - we can cut on, or, measure it!
- The distribution in m_{jj}: scale measure
 - measure, or, bin in it!

conclusions

backup

Dijet mass distribution

No significant excess seen

- |y^{*}| < 0.6 (suppress QCD)
- data m_{jj} compared to smooth fit: $f(x) = p_1(1-x)^{p_2} x^{p_3+p_4 \log(x)}$, where $x = m_{jj} / \sqrt{s}$
- hypothesis testing to choose the number of non-zero parameters
 - 3 parameters sufficient
- BUMPHUNTER excludes any significant deviations and refits

intro

conclusions

Dijet angular distributions

No significant excess seen

BSM SM X

- $|y^*| < 1.7 measure$ isotropy
- QCD NLO and EW corrected PYTHIA prediction normalised to data integral
 - normalisation greatly reduces uncertainty (esp. PDF)
- largest systematic uncertainties:
 - theoretical: renormalisation and factorisation scale choice
 - experimental: jet energy scale uncertainty
- combined fit of MC to data in four highest m_{jj} regions

New limits: models + generic Gaussian signal

model details

16 18 20

Λ [TeV]

14

ວິ ATLAS 0.50 3.5 √s=13 TeV 3.6 fb⁻¹ $0.40 |y^*| < 0.6$ 2.4 2.5 0.30 0.78 2.6 1.5 0.20 0.5 0.10 2 3 3.5 M_{7'} [TeV] σ/σ_{th} = +1 ATLAS √s = 13 TeV, 3.6 fb⁻¹ Observed 95% CL, upper limit Expected 95% CL_ upper limit 10^{-1} 68% CL, band 95% CL, band σ/σ_{th} η, = -1 10⁻¹ m,; > 3.4 TeV

10 12

Non-resonant Contact Interaction

8

Dark matter model

Multijet search

Run: 279984 Event: 1079767163 2015-09-22 03:18:13 CEST

Multijet search

Run: 279984 Event: 1079767163 2015-09-22 03:18:13 CEST

Analysis idea: search for strong gravity signature

- thermal black holes decay democratically
- large multiplicities possible
- measure activity in bins of n_{jet}

• Smooth fit to data (10 functions tested)

- assess fit quality in low- H_T CR
- check extrapolation in VR
- analyse data agreement with baseline function in SR (highest H_T)
- Systematic uncertainty from non-baseline functions

No significant excess seen

- Capture overall large activity in $H_T = \sum_{jets \in \{p_T^{jet} > 50 \text{ GeV}\}} |\rho_T|$
- Define Control, Validation and Signal Region (CR, VR, SR) based on signal expectation
 - given by signal strength at previous limit
 - bootstrap: re-define regions and search in incrementally larger data sets

model details

- rotating thermal black holes in an ADD scenario, 6 extra dimensions
- black hole production threshold mass M_{th} and fundamental Planck scale M_D
- limits at incremental stages shown

ATLAS 8 TeV result here

L Bryngemark (Lund University) Jet searches with ATLAS: first results in Run 2

Run: 280862 Event: 2810917867 2015-10-03 01:08:53 CEST

Photon $(\gamma)+{\sf jet}$

Run: 280862 Event: 2810917867 2015-10-03 01:08:53 CEST

Photon (γ) + jet

Analysis idea: similar to dijet philosophy, but one jet $ightarrow \gamma$

- invariant mass spectrum of γ + jet from QCD Compton scattering background
- search for s-channel resonance
- excited quark decays $q^*
 ightarrow q\gamma$, non-thermal black holes with low multiplicity

conclusions

backup

 $\gamma + \mathsf{jet}$

- $\mathcal{O}(100)$ suppressed by smaller coupling
- suppress QCD: cut on $|\Delta\eta| \leq 1.6$
- data $m_{\gamma j}$ compared to smooth fit: $f(x) = p_1(1-x)^{p_2} x^{-p_3-p_4 \log(x)}, \text{ where } x = m_{\gamma j}/\sqrt{s}$
- model dependent fit, range achieving sufficient sidebands

No significant excess seen

L Bryngemark (Lund University) Jet searches with AT

L Bryngemark (Lund University)

Jet searches with ATLAS: first results in Run 2

Conclusions

- Jets probe the collider energy frontier
- Jet searches benefit greatly from increased beam energy
- I have shown results from analyses entering new phase space
- We see no significant excesses
 - narrow down parameter space for a range of models
 - generic Gaussians provided for recast of resonant models

Just beginning to explore the energy regime opened up with LHC in $\mathsf{Run}2!$

Coming soon: evolutions of the dijet search from ATLAS.

intro

conclusions

backup

Backup

L Bryngemark (Lund University) Jet searches with ATLAS: first results in Run 2 March 10, 2016 19 / 24

Understanding JES

Pre-recommendation: conservative, especially punch-through

Comparing final 2012 and 2015:

- Small increase at low *p*_T: pile-up
- Decrease at high p_{T} : reduced statistical uncertainty!
- \Rightarrow the energy frontier will only get better!

Details on event selection (all jets: anti- k_t , R = 0.4)

- dijets
 - trigger: single jet, $p_{\rm T} > 360 {\rm ~GeV}$
 - leading jet $p_{\rm T} > 440$ GeV (> 99.5% efficient trigger)
 - two or more jets (second jet $p_{\rm T} > 50 \text{ GeV}$)
 - y^* cut: $|y^*| \equiv \frac{|y_1 y_2|}{2} < 0.6$ for mass, $|y^*| < 1.7$ for angular distributions
 - v_R cut: $|y_R| \equiv \frac{|y_1+y_2|}{2} < 1.1$ for angular distributions
 - m_{ii} cut for unbiased kinematics: $m_{ii} > 1.1$ TeV for mass, 2.5 TeV for angular distributions
- multijet
 - H_T trigger, at least one jet with $p_T^{jet} > 200$ GeV, $H_T > 0.85$ TeV
 - $H_T > 1$ TeV (fully efficient trigger)
 - H_T is the scalar $p_{\rm T}$ sum of all jets with $p_{\rm T}^{jet} > 50$ GeV, within $|\eta| < 2.8$
- γ + iet
 - trigger: $p_{
 m T}^{\gamma} > 140$ GeV, loose photon identification criteria
 - $p_{\mathrm{T}}^{jet} > 150$ GeV, $m_{\gamma i} > 1$ TeV
 - $|\Delta \eta(\text{jet}, \gamma)| < 1.6$

21 / 24

Signal models I

- Contact Interactions (CI)
 - effective four-point interaction model
 - characterised by compositeness scale Λ
 - and by destructive or constructive interference with the QCD process $q\bar{q} \rightarrow q\bar{q}$
 - Run 1 limits: 9.0 (CMS) and 12.0 TeV, respectively
 - ATLAS 8 TeV result here
 - 2015 limits: 12.0 and 17.5 TeV (both ATLAS), respectively
 - generated together with QCD in $\mathrm{PytHIA8}$ and brought to NLO using CIJET
- (non-thermal) Quantum Black Holes
 - ADD scenario with fundamental quantum gravity scale $M_D = M_{th}$ (threshold mass), n = 6
 - also a RS scenario with n = 1
 - two generators: $\operatorname{BLACKMAX}$ and QBH
 - Run 1 limits: 5.6 and 5.7 TeV, respectively ATLAS 8 TeV result here
 - 2015 limits: 8.1 and 8.3 TeV, respectively
 - different modelling but final distributions mostly differ by cross section

Signal models II

ig) back to $\gamma+$ jet

- leptophobic Z' boson
 - axial-vector couplings to SM quarks and a Dirac fermion dark matter candidate
 - decays to dark matter set negligible \rightarrow rate to dijets depend on SM coupling g_q and mass $M_{Z'}$
 - no interference modelled
- W' boson
 - decays restricted to quark-antiquark pairs (all six flavours)
 - V A SM couplings
 - Run 1 dijet limit: 2.5 TeV ATLAS 8 TeV result here
 - 2015 dijet limit: 2.6 TeV
- q*
- excited quark decays to a gluon and up- or down-type quark, or
- excited quark decays any flavour $q+\gamma$
- compositeness scale set to m_{q^*}
- SM like gauge interactions
- coupling multipliers $f_s = f = f' = 1$
- Run 1 dijet limit: 4.1 TeV ATLAS 8 TeV result here
- 2015 dijet limit: 5.2 TeV

back to multijet

Signal models III

- rotating thermal micro black holes, and string balls
 - number of extra dimensions n = 2, 4 or 6
 - also a RS scenario with n = 1
 - implemented in CHARYBDIS
 - limits in the plane of 4 + n-dimensional fundamental Planck scale M_D and M_{th} , string scale M_S and coupling g_S respectively
 - different modelling but final distributions mostly differ by cross section