

Search for new Physics in final states with leptons or photons (EXO) with the CMS detector LaThuile 2016, 6-12th March

Raffaella Radogna¹ On behalf of the CMS Collaboration ¹University of Bari and INFN

March 10th, 2016

New Physics predictions

- The Standard Model is a successful theory full of experimental supports
- Confirmed also by the recent discovery of a Higgs boson with a mass of 125 GeV by ATLAS and CMS
- Some notable omissions of the SM: hierarchy problem, lack of a dark matter candidate, absence of gravity...
- Many theories Beyond SM developed
- Common signature of many new Physics BSM is a new massive particle
 - Extra dimensions models: solution of the hierarchy problem lowering the effective Planck scale by "diluting" gravity in additional dimensions
 - predict excitations of the gravitational field (spin-2 gravitons) separated by a characteristic mass scale
 - GUT and Sequential Standard Model (SSM)
 - predict new heavy gauge bosons.

Introduction

13 TeV data:

- unique chance to test new mass ranges
- for new bosons of M=3 TeV, same sensitivity of 8 TeV Run reached with ~1fb⁻¹

OUTLINE:

- 1. Search for new charged gauge bosons decaying in lepton + MET
- 2. Search for new neutral gauge bosons decaying in a lepton pair
- 3. Search for extra dimensional (RS models) models in di-photon

Very clean experimental signatures!

Strategy:

• Search for a localized excess in the di-photon/ di-lepton/lepton+MET mass compatible with the production of a new resonance

Challenges:

- High signal efficiency while effectively removing reducible background
- Detector response at very high energy
- Reconstruction and identification specific for high-energy objects

$\mathcal{N}' \rightarrow e/\mu + MET$

13 TeV

Heavy gauge boson W' decaying into lepton+MET

Experimental signature:

- high-energy e (p_T > 130 GeV) + E_T^{miss}
- high-energy μ (p_T> 53 GeV) + E_T^{miss}

Strategy:

- lepton selection optimized for high-energy
- balanced decay for background suppression 0.4<pt/Et^{miss}<1.5,
- $\Delta \Phi > 0.8\pi$ (back-to-back configuration)
- lepton veto: no other electrons (muons) with pt>35 GeV (25 GeV)
- W' (3 TeV) A*ε: 75% for both channels

Background:

- main **irreducible** $W \rightarrow I\nu$; **reducible** ttbar, Z/γ^* , dibosons (estimated from MC)
- multijet background for electron channel estimated from data

Highest mass events: at $M_T = 2 \text{ TeV}$ (electron channel) **1.3 TeV** (muon channel)

More details: talk A. Escalante

Good agreement between data and MC

LaThuile 2016

$e/\mu + MET$

W'SSM of masses less than 4.4 TeV are excluded

(tighter limits than Run1: W' excluded with a mass less than 3.28 TeV)

13 TeV

5

3000

3500

5000 5500

 $M_{W'}$ (GeV)

4500

4000

€_10⁵

10⁴

 10^{3}

10²

10

10⁻¹

[d]10₂ Br [fb]

b 10⁴

 10^{3}

10²

10

10⁻¹ 🖳 1000

1500

2000

2500

CMS

 $\mu \text{+} \text{E}_{\tau}^{\text{miss}}$

Preliminary

CMS

 $e+E_{T}^{miss}$

Preliminary

Good agreement between data and MC

Raffaella Radogna

CMS EXO-12-011 Heavy gauge boson W' decaying into hadronic tau + MET Experimental signature:

T +MET

- $\tau_h (pT>100 \text{ GeV}) + E_T^{miss} (> 140 \text{ GeV})$
- hadronic tau reconstruction optimized for high-energy
- balanced decay for background suppression $0.7 < p_T/E_T^{miss} < 1.5$,
- $\Delta \Phi > 2.4$ (back-to-back configuration)
- lepton veto: no other loose-ID and isolated leptons

19.7 fb⁻¹ (8 TeV)

CMS

Limits at 95% CL

2500

M_{w'} [GeV]

2000

• W' (3 TeV) A*ε: 42%*16%

Background:

- main **irreducible** $W \rightarrow \tau_h \nu$; **reducible** $W \rightarrow e/\mu + \nu$, t production, Z/γ^* , dibosons (estimated from MC)
- **QCD jet** background estimated from data

The W'_{SSM} is excluded for masses 0.3<M_{W'}<2.7 TeV.

Limits on the W' as a function of the coupling parameter $\cot \theta_E$ for the Non Universal Gauge Interaction Model

LaThuile 2016

6

8 Te\

$Z' \rightarrow ee/\mu\mu(1/3)$

CMS EXO-15-005

Good agreement between data and MC

Heavy gauge boson (Z') decaying into a lepton pair

Experimental signature:

- high-energy electron pair (p_T>35GeV)
- high-energy muon pair (p_T> 53 GeV)

Strategy:

- specific high-energy lepton ID
- Z'->ee
 - 2 categories: Barrel-Barrel (BB) and Barrel-Endcap (BE)
 - $A^*\epsilon (1 \text{ TeV}) = 75 \pm 8\% / 70 \pm 10\%$
 - mass resolution (1 TeV) = 1.4% / 1.8%
- Z'->µµ
 - $A^* \epsilon (1 \text{ TeV}) = 89 \pm {}^{+11} {}_{-14}\%$
 - mass resolution (1 TeV) = 4%

Background:

- main **irreducible** Z/γ^* , **reducible** ttbar, tW, dibosons (estimated from MC)
- multijet background < 3% (1%) of the total background for dielectrons (dimuons) > 500 GeV(estimated from data)
- MC background normalised at the Z peak

Raffaella Radogna

LaThuile 2016

13 TeV

$Z' \rightarrow ee/\mu\mu(2/3)$

CMS EXO-15-005

13 TeV

8

Limits at 95% C.L. on the ratio of Z' cross section to Z/γ^* cross section assuming a narrow resonance

- background model from simulation
- signal pdf: convolution of BW (input of 0%, 0.6% (Z'_{Ψ}) or 3% (Z'_{SSM})) with a Gaussian

$Z' \rightarrow ee/\mu\mu(3/3)$

CMS EXO-15-005

2.6 fb⁻¹ (13 TeV ee) + 2.8 fb⁻¹ (13 TeV, μμ)

13 TeV

The limit exclude a Z'_{SSM} with a mass less than 3.15 TeV and Z'_{Ψ} with a mass less than 2.6 TeV.

(8 TeV limits of 2.90 TeV (Z'_{SSM}) and 2.57 TeV (Z'_{\Psi}) surpassed)

CMS Experiment at the LHC, CERN Data recorded: 2015-Oct-30 19:23:54.631552 GMT Run / Event / LS 260424 / 211873064 / 115

CMS DP -2015/039

CMS Experiment at the LHC, CERN Data recorded: 2015-Aug-22 02:13:48.861952 GMT Run / Event / LS: 254833 / 1268846022 / 846

Highest mass events:

2.4 TeV for the muon channel

2.9 TeV in the electron channel (local **p-value** to observe at least one event in the range m(ee) > 2.8 TeV is **3.6%**)

CMS EXO-12-046

Heavy gauge boson (Z') decaying into a tau pair (eµ final state)

Good agreement between data and MC

Experimental signature:

• electron (Et > 20 GeV |eta| < 2.5) + muon (pt>20 GeV |eta| < 2.1)

Strategy:

- back-to-back (e, μ) (cos $\Delta \Phi$ (e, μ)<-0.95)
- missing transverse momentum direction originating from tau decays
- no b-tagged jets
- $A^* \epsilon (1.25 \text{ TeV}) = 41 \pm 1\%$

Background:

- main Z/γ* at low mass, WW at high mass, reducible, tW, dibosons (estimated from MC)
- ttbar and **multijet** background(estimated from data)

The limit exclude a Z'_{SSM} with a mass less than 1.3 TeV and Z'_{Ψ} with a mass less than 810 GeV.

Di-photon (1/3)

CMS EXO-15-004

Search for RS graviton with 3 assumptions on coupling constant $\tilde{\kappa} = \kappa/m_{\text{Pl}}$: $\tilde{\kappa} = 0.01$ (narrow), 0.1, 0.2 (wide)

Experimental signature: pair of photons (p_T> 75 GeV; I_{ch} < 5 GeV (in 0.3 cone around the photon direction))

- 2 categories: (Barrel-Barrel) **EBEB** and (Barrel-Endcap) **EBEE**
- control region $m_{\gamma\gamma} > 230 (320)$ GeV
- signal region $m_{yy} > 500 \text{ GeV}$

110

dedicated **photon ID** (ϵ =~90% per photon; $\sim 10(20)$ % of reducible background in the signal region)

13 TeV

12

energy scale and resolution calibration using data-driven inputs ($Z \rightarrow ee events$)

Di-photon (2/3)

2.6 fb⁻¹ (13 TeV) CMS Preliminary Events / (20 GeV) 01 ₀0 EBEB category 10 Data Fit model $\pm 1\sigma$ ±2σ 10⁻¹ (data-fit)/ σ_{stat} 2 0 -2 4×10² 5×10² 3×10² 10^{3} 2×10^{3} m, , (GeV) 2.6 fb⁻¹ (13 TeV) CMS Preliminary Events / (20 GeV) EBEE category 10² 10 Data Fit model $\pm 1\sigma$ 10 ±2σ (data-fit)/ σ_{stat} 2 0 -4 3×10² 4×10² 5×10² 10³ 2×10³ m_{y y} (GeV)

CMS EXO-15-004

13 TeV

Background:

- main **irreducible yy** direct production, **reducible y**-**j** and **j**-**j**)
- · good agreement between data-driven estimation and estimations from MC
- background model from parametric fit in data

$$f(m_{\gamma\gamma}) = m_{\gamma\gamma}^{a+b \cdot \log(m_{\gamma\gamma})}$$

Raffaella Radogna

LaThuile 2016

Di-photon (3/3)

13 TeV

CMS EXO-15-004

• RS graviton of mass below 1.3 TeV, 3.1, 3.8 TeV excluded for $\tilde{\kappa} = 0.01, 0.1, and 0.2$

- Local p-value (760 GeV) ~ 2.6σ (narrow width, excess of events in the BB)
- Global p-value ~ 1.2σ

Raffaella Radogna

Di-photon event with m(\gamma\gamma) = 745 GeV

Di-photon 13 TeV + 8 TeV

CMS EXO-15-004

8 TeV + 13 TeV combination for narrow width model:

- ratio of the signal production cross section 8 TeV/13 TeV= 0.24 at 750 GeV
- exclusion limits obtained with the combined analysis improved by 20-30 % for $m_{\gamma\gamma}$ < 1.5 TeV
- Local p-value (750 GeV) ~3σ
- Global p-value ~ 1.7σ

16

Conclusion

- CMS analyzed 13 TeV data searching for evidence of:
 - Heavy gauge bosons (W') in a muon/electron + MET
 - Heavy gauge bosons (Z') in a muon/electron pair
 - RS Graviton in a photon pair
 - 13TeV + 8 TeV results: largest excess has a local significance of $\sim 3\sigma$ (narrow resonance at m_G = 750GeV) and a global significance of 1.7 σ
- No sign of new physics beyond the SM have been found (yet)
- Run-II analyses allowed to establish NEW tighter limits on BSM processes

Bibliography

- **CMS-PAS-EXO-15-005**: "Search for a narrow resonance produced in 13 TeV pp collisions decaying to electron pair or muon pair final states"
- **CMS-DP-2015/039**: "Event display of a candidate electron-positron pair with an invariant mass of 2.9 TeV"
- **CMS-PAS-EXO-12-046**: "Search for high-mass resonances and large extra dimensions with tau-lepton pairs decaying into final states with an electron and a muon at $\sqrt{s} = 8$ TeV"
- CMS-PAS-EXO-15-006: "Search for SSM W' production, in the lepton+MET final state at a center-of-mass energy of 13 TeV"
- **CMS-PAS-EXO-12-011:** "Search for W' decaying to tau lepton and neutrino in protonproton collisions at $\sqrt{s} = 8 \text{ TeV}''$ (arXiv:1508.04308)
- **CMS-PAS-EXO-15-004**: "Search for new physics in high mass diphoton events in proton-proton collisions at $\sqrt{s} = 13$ TeV"

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Additional slides

Z' discovery potential

Raffaella Radogna

LaThuile 2016

20

INFN HARD Medical Chicks Medican Bablere di Bari

CERN

Di-photon: ATLAS

21

Di-photon

CMS EXO-15-004

$m_{\rm G}~({\rm GeV})$	category	ñ	FWHM (GeV)	ñ	FWHM (GeV)
500	EBEB	0.01	14	0.2	36
500	EBEE	0.01	22	0.2	42
1000	EBEB	0.01	27	0.2	74
1000	EBEE	0.01	43	0.2	85
2000	EBEB	0.01	54	0.2	147
2000	EBEE	0.01	76	0.2	163
3000	EBEB	0.01	96	0.2	225
3000	EBEE	0.01	110	0.2	254
4000	EBEB	0.01	121	0.2	320
4000	EBEE	0.01	150	0.2	326

Width of the reco mass distribution for different signal hypotheses

Di-photon: Background

Background: main **irreducible YY** direct production, **reducible Y-jet** and **jet-jet**)

- composition of the bkg determined through a 2D template ($I_{ch}(\gamma_1)$, $I_{ch}(\gamma_2)$)
- good agreement between data-driven estimation and estimations from MC

-photon

CMS EXO-15-004

24

Di-photon

CMS EXO-15-004

CMS EXO-12-011

8 TeV

26

INFN Brites Medicash Sectors di Bari

CERN

T+ME

27

INFN Lithes hereine Stations di Bar

CERN

(13-Tev **CMS**[|] Preliminary e+E^{miss}_T | $W \rightarrow |\nu$ Events/(25 GeV) 10² 10² multijet tī Z/γ Diboson SSM W' M=2.4TeV SSM W' M=3.6TeV Syst. uncer. 🔶 Data 10² 10^1 10⁰ 10⁻¹ Data/MC 2.0 1.5 1.0 0.5 3000 M_T[GeV] 200 300 1000 2000 $2.2 \text{ fb}^{-1}(13 \text{ TeV})$ CMS Preliminary e+E^{miss} $W \rightarrow |\nu$ Events>M_T/(25 GeV) ⁰⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ multijet tī tī Z/γ Diboson Syst. uncer. 🕂 Data 10^1 10⁰ 10⁻¹ 2.0 Data/MC 1.5 1.0 0.5 3000 M_T[GeV] 200 300 1000 2000

Z.Z ID

CMS EXO-15-006

28

INFN Sedera di Bar

CERN

Raffaella Radogna

LaThuile 2016

CMS EXO-15-005

29

ee

Raffaella Radogna