Searches for SUSY and BSM Higgs with ATLAS in Run II

Les Rencontres de Physique de la Vallee d'Aoste, La Thuile

Christian Ohm, on behalf of the ATLAS Collaboration

Lawrence Berkeley National Laboratory

March 10, 2016

Outline

1. Introduction

2. Supersymmetry searches

- $1\ell + jets + E_T^{miss}$
- 0ℓ + 4-6 jets + $E_{\rm T}^{\rm miss}$
- 0ℓ + 7-10 jets + $E_{\rm T}^{\rm miss}$
- $Z(\ell\ell) + jets + E_T^{miss}$
- 2 b-jets + $E_{\rm T}^{\rm miss}$
- 3-4 *b*-jets + *E*^{miss}_T
- 2ℓ same-sign $/3\ell + E_{\rm T}^{\rm miss}$
- 3. Beyond-SM Higgs searches
 - $H/A \to \tau \tau (+b)$
 - High-mass $\gamma\gamma$ resonance
- 4. Summary & conclusions

2015 ATLAS $pp\ {\rm data}\ {\rm set}$

 $\sqrt{s} = 13 \text{ TeV}, \int \mathcal{L} dt = 3.2 \text{ fb}^{-1}$

Still more ATLAS BSM results in talks by L. Bryngemark, D. Strom, D. Lopez, and A. Cortes!

A brief introduction to supersymmetry

What is SUSY?

- Generalization of SM: symmetry between forces and matter particles
- ► Introduces sfermions and gauginos ⇒ doubles particle content wrt SM

SUSY is attractive

- Can explain Dark Matter
- Alleviates hierarchy problem
- Allows for gauge coupling unification

but. . .

► Over 100 free parameters ⇒ wide range of possible exp. signatures

So, SUSY is theoretically appealing, phenomenologically rich, and therefore experimentally challenging

• Extended Higgs sector: h, H, A, H^{\pm}

8 TeV \rightarrow 13 TeV $\Rightarrow \sigma(SUSY)$ grows:

• $\sigma(\tilde{g}\tilde{g}) \times 30$ for $m_{\tilde{g}} = 1.4$ TeV

•
$$\sigma(\tilde{t}\tilde{t}) \times 8$$
 for $m_{\tilde{t}} = 700 \text{ GeV}$

• $\sigma(\chi\chi) \times 4$ for $m_{\chi} = 500 \text{ GeV}$

In contrast: $\sigma(t\bar{t}) \times 3.3 \Rightarrow S/B$ boost

Early Run II priorities:

- Target strong production of \tilde{g} and \tilde{q}
- Optimize for discovery, simple and robust analyses (cut & count),

ATLAS in Run II - upgraded with additional innermost tracker layer (IBL)

proton-proton collisions at 13 TeV centre-of-mass energy

Candidate $t\bar{t}$ event!

Run: 266919 Event: 19982211 2015-06-04 00:21:24

Detector performance understood quickly with 13 TeV data

Also key for these results:

- flavor tagging
- E^{miss} strong discrimination power due to escaping DM particles!
- Variables describing event topology and kinematics

General strategy for Run II: typical workflow

- Signal region: optimized for S/B
- Uses variables describing event topology and kinematics
- Can't rely on perfect modeling in MC out to tails in distributions

For main irreducible BGs ($t\bar{t}, V+jets$):

- Define
 - 1. Control regions (CRs) \Rightarrow MC normalization factors
 - 2. Test extrapolation using validation regions (VRs)
 - 3. Predict yields in blinded signal regions (SRs)
- Considerations:
 - Extrapolate along reliably modeled variables
 - Uncertainties: trade-off between stat and syst.

Reducible backgrounds measured in data, for example:

- "Fake" $E_{\mathrm{T}}^{\mathrm{miss}}$, ℓ
- Charge mis-identification for ℓ

$1\ell + jets + E_T^{miss}$ search

Target: final states with significant $E_{\rm T}^{\rm miss}$, jets and exactly one isolated e/μ

Background estimation: $t\bar{t}$ and W+jets dominate \Rightarrow normalize MC in CRs

Ex: soft-lepton 2-jet

- ▶ Regions split by requirements on E^{miss}_T and m_T
- ▶ $t\bar{t}$ CR: ≥ 1 *b*-jet
- ▶ W+jets CR: no b-jets

Design of SRs:

- 4 hard-lepton SRs (large m_{˜χ1}[±] − m_{˜χ1})
- 2 soft-lepton (compressed spectra)
- ► Further subdivided using n_{jets}, E^{miss}_T, m_T, m^{incl}_{eff}

ATLAS-CONF-2015-076

$1\ell + \text{jets} + E_{\text{T}}^{\text{miss}}$: results

- Largest deviation: 2σ excess in hard-lepton 6-jet SR:
 - e: exp: 1.9 ± 0.6 , obs: 2
 - μ : exp: 2.5 ± 0.8, obs: 8
- Exclusion curves in $m_{\tilde{g}}$ - $m_{\chi_1^0}$ plane \Rightarrow
- Run-l contour in gray, improved limits now exclude up to m_{g̃} = 1.6 TeV

(Throughout: only showing example interpretations - more available!)

SR design:

- ▶ 2, 4, 5, 6 jets (no ℓ!)
- Subdivided in effective mass

$$m_{\rm eff} = \sum_{\rm jets} p_{\rm T} + E_{\rm T}^{\rm miss}$$

Backgrounds:

- W+jets: CR for $W \rightarrow \ell \nu$ (b-jet veto) \nearrow
- Top: CR with $1\ell \& \ge 1 b$ -jet
- $Z(\nu\nu)$ +jets: estimated from γ +jets
- Diboson from MC
- Selection efficiently rejects multijet bg, residual estimated from CR with small $\Delta \phi_{\min}(E_{T}^{miss}, j)$

0ℓ + 4-6 jets + $E_{\rm T}^{\rm miss}$: results

Results

- Data agrees with bg estimate, no significant excess observed
- New limits derived:
 - \checkmark New exclusions in $m_{\tilde{g}}$ - $m_{\chi_1^0}$ plane
 - \downarrow Slightly improved limits in $m_{\tilde{q}}$ - $m_{\chi_1^0}$

0ℓ + 7-10 jets + $E_{\rm T}^{\rm miss}$ search

SRs for $\tilde{g}\tilde{g}$ with complex decays:

- 7, 8, 9, 10 jets
- Looser $E_{\mathrm{T}}^{\mathrm{miss}}$ requirements
- Up to 2 b-jets

Background estimation:

- Multijet: $E_{\rm T}^{\rm miss}$ significance, $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$, is ~indep. of $n_{\rm jets}$, extract templates from 5j and 6j CRs
- ▶ Top and W+jets from MC

No significant excess \Rightarrow Limits up to $m_{\tilde{g}} \sim 1.4 \text{ TeV}$

$Z(\ell\ell) + jets + E_T^{miss}$ search

Target: $\tilde{g}\tilde{g}$ or $\tilde{q}\tilde{q}$ with $Z \to \ell\ell$ in decay

Background estimation:

$$N_{ee/\mu\mu}^{\rm bg \ est.} = \frac{1}{2} N_{e\mu}^{\rm CR} \times k_{ee/\mu\mu}$$

- ► WZ, ZZ, ttV from MC, checked in VR
- ► Z+jets: estimated from γ+jets events in data

Excess in 8 TeV Run I search:

ee: 3σ, μμ: 1.7σ

Reproduce Run I SR:

- ► SFOS *ee*/μμ with 81 GeV < *m*_{ℓℓ} < 101 GeV</p>
- 2 jets with $\Delta \phi_{\min}(E_{\mathrm{T}}^{\mathrm{miss}}, j) > 0.4$
- $E_{\rm T}^{\rm miss} > 225 \,\,{\rm GeV}, \, H_{\rm T} > 600 \,\,{\rm GeV}$

$Z(\ell\ell) + \text{jets} + E_{\text{T}}^{\text{miss}}$: results

ATLAS-CONF-2015-082

Final event yield for 2015 data:

- ► Expected: 10.3 ± 2.3
- Observed: 21 (10 *ee*, 11 $\mu\mu$) $\Rightarrow 2.2\sigma$ excess

CMS observes 12 with $12^{+4.0}_{-2.8}$ expected (CMS-PAS-SUS-15-011)

2 b-jets + $E_{\mathrm{T}}^{\mathrm{miss}}$ search

Targets direct \tilde{b} pair-production

- 4 SRs for
 - low $m_{\tilde{\chi}_1^0}$ (subdivided in $m_{\rm CT}$)
 - more compressed SUSY spectra
- ▶ BG from $W/Z/t\bar{t}$ estimated from CRs with 1-2 ℓ

No significant excess $\Rightarrow m_{\tilde{b}} < 850 \text{ GeV}$ excluded

$3-4 \ b$ -jets + $E_{\rm T}^{\rm miss}$ search

Target: $\tilde{g}\tilde{g}$ with 3rd gen. decays

- ► SR design:
 - 0ℓ (b) and 1ℓ (t)
 - Subdivided in E_{T}^{miss} , n_{jets} , *b*-jets
- Backgrounds
 - ▶ Dominated by tt
 , estimated in lower-E^{miss}_T CRs
 - Other BGs from MC

No significant excess \Rightarrow Limits up to $m_{\tilde{g}} \sim 1.7 {\rm ~TeV}$

2ℓ same-sign $/3\ell$ + $E_{\mathrm{T}}^{\mathrm{miss}}$ search

Target: \tilde{g}/\tilde{q} prod. w/ $W \to \ell \nu$ decays

▶ SR design: 0, 1 and 3 *b*-jets

Signal region	N_{lept}^{signal}	$N_{b-\rm jets}^{20}$	$N_{ m jets}^{50}$	$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	$m_{\rm eff}~[{\rm GeV}]$
SR0b3j	≥ 3	=0	≥ 3	>200	$>\!550$
SR0b5j	≥ 2	=0	≥ 5	>125	>650
SR1b	≥ 2	≥ 1	≥ 4	> 150	$>\!550$
SR3b	≥ 2	≥ 3	-	> 125	>650

- Backgrounds
 - Charge mis-id measured in $Z \to \ell \ell$
 - Fake leptons from id-based matrix method
 - Other processes from MC

$H/A \to \tau \tau (+b)$ search

Target: additional neutral Higgs bosons A and H in MSSM from gg fusion & b-associated production \Rightarrow

$\tau_{\rm lep}$ - $\tau_{\rm had}$

 Jets (W, QCD) faking e/μ, τ estimated from fake-factors in CRs

$\tau_{\rm had}$ - $\tau_{\rm had}$

 Dominant BG QCD, estimated from fake-factor method

Improved upper $\tan \beta$ limit for $m_A > 700 \text{ GeV}$

ATLAS-CONF-2015-061

High-mass $\gamma\gamma$ resonance search

- γγ key channel for discovering and measuring the 125 GeV Higgs
- Refined but simple analysis, selection, optimized for scalar

Selection

- Two 'tight' photons
- $\begin{array}{l} \blacktriangleright \mbox{ Relative } E_{\rm T} \mbox{ cuts:} \\ E_{\rm T}^{\gamma_1}/m_{\gamma\gamma} > 0.4 \\ E_{\rm T}^{\gamma_2}/m_{\gamma\gamma} > 0.3 \end{array}$
- Isolation: E_T-dependent, calo- and track-based

Signal model: double-sided Crystal Ball function, two width hypotheses:

- Narrow-Width Approx. (NWA)
- Large Width (LW), $\leq 25\%$ of $m_{\gamma\gamma}$

Search looks for bump in $m_{\gamma\gamma}$, SM bg from fit of smooth function to data:

$$f_{(k)}(x; b, \{a_k\}) = (1 - x^{1/3})^b x^{\sum_{j=0}^k a_j (\log x)^j}$$
, where $x = m_{\gamma\gamma} / \sqrt{s}$

Background fit tested for several k-values, k=0 performs sufficiently. S+B fit for $m_{\gamma\gamma}>150~{\rm GeV}.$

High-mass $\gamma\gamma$ resonance: results

- ► Under NWA: local excess of 3.6σ, minimal p₀ at m_{γγ} ≈ 750 GeV
- ► [200, 2000] GeV considered ⇒ compensate for *look-elsewhere effect* ⇒ global significance 2.0σ

(PER pulled 1.5σ in NWA fit)

LW hypothesis:

- Best-fit width of 45 GeV (~ 6%)
- Increased local significance: 3.9σ
- LEE-adjustment (mass range & width up to 10%)
 ⇒ global significance of 2.3σ

Summary & conclusions

- ► Several searches for SUSY and additional Higgs bosons have already been performed by ATLAS using the 3.2 fb⁻¹ of data from 2015
- More results presented tonight & tomorrow (Lene, David, David, Arely) keep an eye on the ATLAS winter conference results page for updates
- ► For most searches the observations in the data agree well with the expectations from background processes. Two intriguing excesses seen:
 - $Z + \text{jets} + E_T^{\text{miss}}$: 2.2 σ (in ATLAS also in Run I, not in CMS)
 - High-mass $\gamma\gamma$: $\sim 2\sigma$ around $m_{\gamma\gamma} = 750 \text{ GeV}$

The 25 fb^{-1} the LHC plans to deliver during 2016 will reveal the nature of the observed excesses - the data taking starts soon!

Back-up material

Interest in the $\gamma\gamma$ results on the arXiv since December

Number of arXiv papers related to December's preliminary high-mass $\gamma\gamma$ results. Probably more on interpretations in Marco Nardecchia's talk tomorrow.

There's even a paper predicting the shape of this curve:

"... fits to the current data predict that the total number of papers on the topic will not exceed 310 papers by the June 1. 2016"

High-mass $\gamma\gamma$ resonance search: more details

Signal selection eff:

- Overall signal efficiency:
 - ▶ 30-40% for ggF
 - 30-45% for VBF
 - ▶ 25-35% for tt
- In fiducial volume: 55-70%

Signal modeling:

- ► Optimized for narrow Higgs-like resonances with *m* > 200 GeV
- Prod. via ggF, VBF, WH/ZH, $t\bar{t}H$

Background estimation:

- Parameterized by smooth function, free parameters adjusts it to the data
- Possibility of needing more degrees of freedom considered and evaluated with F-test ⇒ k > 0 not needed

Fit & significance:

- Unbinned ML fit of $m_{\gamma\gamma}$ distribution
- Local *p*-value for bg-only hypo from asymptotic approximation
- LEE based on number of 2σ crossings in [200, 2000] GeV

Compatibility with $8~{\rm TeV}$ data: within $2.2\sigma~(1.4\sigma)$ for NWA (LW)

High-mass $\gamma\gamma$ resonance search: main uncertainties

Source	Uncertainty					
Background modeling °•						
Spurious signal	$2-10^{-3}$ events, mass-dependent					
Background fit	\leq 50%– \leq 20% of the total signal yield uncertainty,					
	mass- and signal-dependent					
Signal modeling °•						
Photon energy resolution	$^{+[55-110]\%}_{-[20-40]\%}$, mass-dependent					
Signal yield •						
Luminosity	±5%					
Trigger	±0.63%					
C_X factors •						
Photon identification	$\pm (3-2)\%$, mass-dependent					
Photon isolation	$\pm (4.1-1)\%$, mass-dependent					
Production process	±3.1%					

Table 1: Summary of the systematic uncertainties in the signal-plus-background likelihood fit when considering the NWA signal model. The \circ symbol denotes categories of uncertainties that affect the local *p*-value for the background-only hypothesis, while the \bullet symbol denotes uncertainties that impact the limit on $\sigma_{\text{fiducial}} \times \text{BR}(X \to \gamma \gamma)$.

$Z(\ell \ell) + \text{jets} + E_{\text{T}}^{\text{miss}}$: additional details

Background estimation:

- ► Flavor-symmetric: tt̄, WW, Wt ⇒ measured in eµ data Total: 60% (70%, 20%, 8%)
- $Z/\gamma *+$ jets: gives $E_{\rm T}^{\rm miss}$ due to mismeasurements (or ν in jet fragmentation) \Rightarrow small but peaked at $m_{\ell\ell} \sim m_Z$
- ▶ Diboson: ~30% (from MC)
- $Z/\gamma*+$ jets details:
- Exploit that Z+jets and γ+jets have similar topologies, Z and γ both well-measured, hadronic recoil
- ► Use (lepton-free) γ+jets sample with SRZ-like kinematics (no E^{miss}_T cut)
- ▶ Apply p_T reweighting, smearing (µ channel only), recalculate E_T^{miss}
- Normalize $E_{\mathrm{T}}^{\mathrm{miss}}$ in Z CR

MC closure test

$Z(\ell\ell) + {\rm jets} + E_{\rm T}^{\rm miss}$: additional details about SR, VRs, CRs

Region	E_{T}^{miss} [GeV]	$H_{\mathbf{T}}$ [GeV]	n_{jets}	$m_{\ell\ell}$ [GeV]	SF/DF	$\Delta \phi(\mathbf{jet}_{12}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})$	$m_{\mathrm{T}}(\ell_3, E_{\mathrm{T}}^{\mathrm{miss}})$ [GeV]	$n_{\rm b-jets}$
Signal regions								
SRZ	> 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	> 0.4	-	-
Control regions								
Z normalisation	< 60	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	> 0.4	-	-
CR-FS	> 225	> 600	≥ 2	$61 < m_{\ell\ell} < 121$	DF	> 0.4	-	-
CRT	> 225	> 600	≥ 2	$m_{\ell\ell} \notin [81,101]$	\mathbf{SF}	> 0.4	-	-
Validation regions								
VRZ	< 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	> 0.4	-	-
VRT	100 - 200	> 600	≥ 2	$m_{\ell\ell} \notin [81, 101]$	SF	> 0.4	-	-
VRS	100 - 200	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	> 0.4	-	-
VR-FS	100 - 200	> 600	≥ 2	$61 < m_{\ell\ell} < 121$	DF	> 0.4	-	-
VR-WZ	100 - 200	-	-	-	3ℓ	-	< 100	0
VR-ZZ	< 100	-	-	-	4ℓ	-	-	0
VR-3L	60 - 100	> 200	≥ 2	$81 < m_{\ell\ell} < 101$	3ℓ	> 0.4	-	-

Preparing for La Thuile

How to not do it

Variable definitions

Missing transverse momentum (or energy):

$$E_{\rm T}^{\rm miss} = \sqrt{(E_x^{\rm miss})^2 + (E_y^{\rm miss})^2}$$

where $E_{x(y)}^{\rm miss} = -\sum E_{x(y)}$ summed over all calibrated $e,\gamma,\mu,\tau,\,{\rm jets.}\,.$.

Scalar transverse-energy sum:

$$H_{\rm T} = \sum_{\rm jets,\ell} p_{\rm T}$$

Effective mass:

$$m_{\mathrm{eff}}^{(\mathrm{incl})} = \sum_{\mathrm{jets},\ell} p_{\mathrm{T}} + E_{\mathrm{T}}^{\mathrm{miss}}$$

► Transverse mass (1ℓ):

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\ell} E_{\rm T}^{\rm miss} (1 - \cos[\Delta \phi(\vec{\ell}, E_{\rm T}^{\rm miss})])}$$

▶ Contransverse mass (measures the masses of pair-prod. semi-invisibly decaying heavy particles, e.g. $\tilde{b} \rightarrow b\chi^0$):

$$m_{\rm CT}^2(v_1, v_2) = [E_{\rm T}(v_1) + E_{\rm T}(v_2)]^2 - [\boldsymbol{p}_{\rm T}(v_1) - \boldsymbol{p}_{\rm T}(v_2)]^2$$

Run I SUSY results

ATLAS SUSY Searches* - 95% CL Lower Limits Status: July 2015

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb	¹] Mass limit	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	Reference
Inclusive Searches	$\begin{array}{l} \text{MSUGRACMSSM}\\ \hline q\bar{q}, \bar{q}, -q\bar{q}_1^{(2)} \\ q\bar{q}, \bar{q}, -q\bar{q}_1^{(2)} \\ q\bar{q}, \bar{q}, -q\bar{q}_1^{(2)} (\text{compressed})\\ \bar{q}\bar{q}, \bar{q}, -q\bar{q}_1^{(2)} \\ \bar{q}\bar{s}, \bar{s}, -q\bar{q}\mathcal{K}_1^{(1)} \\ \bar{q}\bar{s}, \bar{s}, -q\bar{s}, -q\bar{s}$	$\begin{array}{c} 0.3 \ e, \mu/1.2 \ \tau \\ 0 \\ mono-jet \\ 2 \ e, \mu \ (off 2) \\ 0 \\ 0 \\ 0.1 \ e, \mu \\ 1.2 \ \tau + 0.1 \ i \\ 2 \ e, \mu \\ \gamma \\ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 0-3 jets 0-2 jets 1 b 2 jets 2 jets 2 jets 2 jets	2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2	20.3 20.3 20.3 20.3 20 20 20 20.3 20.3 2	4-1 890 Gen 4 100-440 Gen/ 7 20 Gen/ 8 720 Gen/ 8 80 Gen 9 800 Gen 9 80	1.33 TeV 1.26 TeV 1.32 TeV 1.32 TeV 1.32 TeV 1.3 TeV 1.3 TeV 1.25 TeV	23 TeV [mc])-m(2) mc](-)-(10 GeV mc])-(10 G	1507.05525 1405.7875 1507.05525 1503.03230 1405.7875 1507.05525 1507.05525 1407.0803 1507.05403 1507.05403 1507.05403 1507.05403 1503.03230
3 rd gen. § med.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0-1 e,μ 0-1 e,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes	20.1 20.3 20.1 20.1	2 2 2 2 2 2	1.25 TeV 1.1 TeV 1.34 TeV 1.3 TeV	m(\$\vec{r}_1^0)<400 GaV m(\$\vec{r}_1^0)<350 GaV m(\$\vec{r}_1^0)<400 GaV m(\$\vec{r}_1^0)<300 GaV	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks drect production	$\begin{array}{l} b_1 \bar{b}_1, \ b_1 \rightarrow b \bar{k}_1^0 \\ \bar{b}_1 \bar{b}_1, \ \bar{b}_1 \rightarrow i \bar{\ell}_1^+ \\ \bar{t}_1 \bar{t}_1, \ \bar{t}_1 \rightarrow b \bar{k}_1^+ \\ \bar{t}_1 \bar{t}_1, \ \bar{t}_1 \rightarrow b \bar{k}_1^0 \\ \bar{t}_1 \bar{t}_1, \ \bar{t}_1 \rightarrow b \bar{k}_1^0 \\ \bar{t}_1 \bar{t}_1, \ \bar{t}_1 \rightarrow c \bar{k}_1^0 \\ \bar{t}_1 \bar{t}_1 (\operatorname{rating} \operatorname{GMSB}) \\ \bar{t}_2 \bar{t}_2, \ \bar{t}_2 \rightarrow t_1 + Z \end{array}$	0 2 e, µ (SS) 1 · 2 e, µ 0 · 2 e, µ 2 e, µ (Z) 3 e, µ (Z)	2 b 0-3 b 1-2 b 0-2 jets/1-2 nono-jet/c-t 1 b 1 b	Yes Yes b Yes ag Yes Yes Yes	20.1 20.3 1.7/20.3 20.3 20.3 20.3 20.3 20.3	5 100.620 GeV 6 275-40 GeV 7 10-167 GeV 7 20-460 GeV 7 30-191 GeV 7 90-240 GeV 7 90-240 GeV 7 150-800 GeV 7 290-600 GeV		$\begin{split} &m(\tilde{t}_{1}^{2})\!$	1308.2631 1404.2500 1209.2102,1407.0583 1506.08616 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{array}{l} \tilde{t}_{1,R}\tilde{t}_{1,R}, \tilde{t} \rightarrow \tilde{t}_{1}^{0} \\ \tilde{x}_{1}^{*}\tilde{x}_{1}^{*}, \tilde{x}_{1}^{*} \rightarrow \tilde{t}_{N}(\tilde{v}) \\ \tilde{x}_{1}^{*}\tilde{x}_{1}^{*}, \tilde{x}_{1}^{*} \rightarrow \tilde{t}_{N}(\tilde{v}) \\ \tilde{x}_{1}^{*}\tilde{x}_{1}^{*}, \tilde{x}_{1}^{*} \rightarrow \tilde{v}(\tilde{v}) \\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{*} \rightarrow \tilde{W}\tilde{x}_{1}^{*}\tilde{x}_{1}^{0} \\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{*} \rightarrow \tilde{W}\tilde{x}_{1}^{*}\tilde{x}_{1}^{0} \\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{*} \rightarrow \tilde{W}\tilde{x}_{1}^{*}\tilde{x}_{1}^{*} \\ \tilde{x}_{2}^{*}\tilde{x}_{2}^{*}, \tilde{x}_{2}^{*} \rightarrow \tilde{x}_{1}^{*}\tilde{x}_{1}^{*} \\ \tilde{x}_{2}^{*}\tilde{x}_{2}^{*}, \tilde{x}_{2}^{*} \rightarrow \tilde{x}_{1}^{*}\tilde{x}_{1}^{*} \\ \tilde{g}GM (\text{win NLSP}) \text{ weak proc} \end{array} $	2 e,μ 2 e,μ 2 τ 3 e,μ 2·3 e,μ τ/γγ e,μ,γ 4 e,μ 1. 1 e,μ + γ	0 0 0-2 jets 0-2 b 0 -	R R R R R R R R	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Z 99/35 GeV 1 140-455 GeV 1 160-455 GeV 1 12 1 1 1 <		$\begin{split} m(\tilde{t}_{1}^{2}) &= 0.GaV \\ m(\tilde{t}_{1}^{2}) &= 0.GaV , m(\tilde{t}_{1}^{2}) &= 0.5(m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) &= 0.GaV , m(\tilde{t}_{1}^{2}) &= 0.S(m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) &= 0.m(\tilde{t}_{1}^{2}) &= 0.S(m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) &= 0.S(m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) &= 0.S(m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ erc(1mm) \\ erc(1mm) \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493
Long-lived particles	Direct $\tilde{k}_{1}^{*}\tilde{k}_{1}^{*}$ prod., long-lived J Direct $\tilde{k}_{1}^{*}\tilde{k}_{1}^{*}$ prod., long-lived J Stable, stopped \tilde{g} R-hadron Stable \tilde{g} -R-hadron GMSB, stable $\tau, \tilde{k}_{1}^{0} \rightarrow (\tilde{\tau}, \tilde{\mu}) \rightarrow (\tilde{G}, \tilde{\mu}) \rightarrow (\tilde{G}, \tilde{M})$ $\tilde{g}\tilde{g}, \tilde{k}_{1}^{0} \rightarrow over(qw)(qw)(qw)$ $\tilde{g}\tilde{g}, \tilde{k}_{1}^{0} \rightarrow Z\tilde{G}$	\tilde{t}_1^+ Disapp. trk \tilde{t}_1^+ dE/dx trk 0 trk $r(e, \mu)$ 1·2 μ 2 γ displ. $ee/e\mu/\mu$ displ. vtx + je	1 jet - 1-5 jets - - - - ts -	Yes Yes Yes Yes	20.3 18.4 27.9 19.1 19.1 20.3 20.3 20.3	1 270 GeV 2 482 GeV 2 832 GeV 3 537 GeV 43 537 GeV 3 435 GeV 3 435 GeV 3 435 GeV 3 435 GeV	1.27 TeV 0 TeV 0 TeV	$\begin{split} m(\tilde{t}_1^n) + m(\tilde{t}_1^n) &= 160 \ MeV, \ r(\tilde{t}_1^n) &= 0.2 \ ns \\ m(\tilde{t}_1^n) + m(\tilde{t}_1^n) &= 160 \ MeV, \ r(\tilde{t}_1^n) &= 100 \ MeV, \ r(\tilde{t}_1^n) &= 100 \ deV, \ 10 \ \mu_{K} &< r(\tilde{t}_1^n) &= 100 \ deV, \ 10 \ \mu_{K} &< r(\tilde{t}_1^n) &= 100 \ deV, \ 10 \ \mu_{K} &< r(\tilde{t}_1^n) &= 100 \ deV, \ 10 \ \mu_{K} &< r(\tilde{t}_1^n) &= 100 \ deV, \ 10 \$	1310.3675 1506.05332 1310.6584 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$\begin{array}{c} LFV pp \rightarrow \tilde{v}_{r} + X, \tilde{v}_{r} \rightarrow equ/et/\mu \\ Bilinear RPV CMSSM \\ \tilde{\kappa}_{1}^{r} \tilde{\kappa}_{1}, \tilde{\kappa}_{1}^{r} \rightarrow WR_{1}^{0}, \tilde{\kappa}_{1}^{0} \rightarrow ee\tilde{v}_{p}, qu \\ \tilde{\kappa}_{1}^{r} \tilde{\kappa}_{1}, \tilde{\kappa}_{1}^{r} \rightarrow WR_{1}^{0}, \tilde{\kappa}_{1}^{0} \rightarrow ee\tilde{v}_{p}, qu \\ \tilde{\kappa}_{1}^{r} \tilde{\kappa}_{1}, \tilde{\kappa}_{1}^{r} \rightarrow WR_{1}^{0}, \tilde{\kappa}_{1}^{0} \rightarrow ee\tilde{v}_{p}, qu \\ \tilde{\kappa}_{2}^{r} \tilde{\kappa}_{2}^{r} \rightarrow Qqg \\ \tilde{\kappa}_{2}^{r} \tilde{\kappa}_{2}^{r} \rightarrow Qqg \\ \tilde{\kappa}_{2}^{r} \tilde{\kappa}_{2}^{r} \tilde{\kappa}_{1}^{r}, \tilde{\kappa}_{1} \rightarrow bs \\ \tilde{\kappa}_{1}^{r}, \tilde{\kappa}_{1} \rightarrow bs \\ \tilde{\kappa}_{1}^{r}, \tilde{\kappa}_{1} \rightarrow bd \end{array}$	$\begin{array}{c} r & e \mu, e \tau, \mu \tau \\ 2 e, \mu (SS) \\ \bar{\nu}_e & 4 e, \mu \\ \bar{\nu}_\tau & 3 e, \mu + \tau \\ 0 \\ 2 e, \mu (SS) \\ 0 \\ 2 e, \mu \end{array}$	0-3 b 6-7 jets 6-7 jets 0-3 b 2 jets + 2 2 b	· Yes Yes · · · · ·	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	5. 4.2 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	1.7 1.35 TeV ieV V i 0 TeV	$\begin{split} & \underset{m(\xi)=0}{\text{TeV}} = \mathcal{A}_{11} = 0.15, \ \mathcal{A}_{1211} = 0.000627\\ & \underset{m(\xi)=0}{\text{m}} \geq 0.2 + r_{2,n} < 1 \text{ mm}\\ & \underset{m(\xi')=0}{\text{m}} \geq 0.2 + m_{1}^{-1} \wedge 1_{n+1} = 0\\ & \underset{m(\xi')=0}{\text{m}} \geq 0.2 + m_{1}^{-1} \wedge 1_{n+1} = 0\\ & \underset{m(\xi')=0}{\text{m}} \geq 0.2 + 0.2 \\ & \underset{m(\xi')=0}{\text{m}} \geq 0.2 + 0.2 \\ & \underset{m(\xi')=0}{\text{m}} \geq 0.2 \\ & \underset$	1503.04430 1404.2500 1405.5088 1502.05686 1502.05686 1404.250 ATLAS-CONF-2015-025 ATLAS-CONF-2015-015
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\ell}_1^0$	0	2 c	Yes	20.3	2 490 GeV		$m(\tilde{\ell}_1^0){<}200~GeV$	1501.01325
					1)-1	1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1ar theoretical signal cross section uncertainty.

ATLAS Preliminary $\sqrt{s} = 7, 8 \text{ TeV}$