

Results and Perspectives from the NA62 Experiment at CERN

Michal Kovaľ

(michal.koval@cern.ch) Comenius University Bratislava

on behalf of the NA62 Collaboration

Les Rencontres de Physique de la Vallée d'Aoste 8 March 2016, La Thuile, Italy

Kaon Decay in Flight Experiments at CERN

NA62: \approx 200 participants, 30 institutes

NA31 (1980s): K_L/K_S \rightarrow First evidence of Direct CP violation in neutral Kaon Decays

NA48 (1997 – 2001): K_L/K_S \rightarrow Direct CP violation discovery

NA48/1 (2002): K_s , hyperons \rightarrow Rare decay studies

NA48/2 (2003 – 2004): $K^+/K^ \rightarrow K^{\pm}$ precision measurements

NA62 (2007): *K*⁺/*K*⁻

ightarrow Lepton universality: $K_{e2}/K_{\mu 2}$

NA62 (2015 –): K⁺

- \rightarrow Main goal: BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$)
- \rightarrow Rare decay studies
- \rightarrow LFV, LNV decays
- \rightarrow Search for heavy u, axions, . . .

Introduction ○●	π^0 TFF Slope Measurement	$K^+ ightarrow \pi^+ u ar u$ Branching Ratio Measurement	Summary	Spares 00

Outline

1. NA62 preliminary result:

- π^0 transition form factor slope measurement (2007 data analysis)
- 2. $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ branching ratio measurement at NA62: status and prospects

$$\frac{1}{\Gamma(\pi_{2\gamma}^{0})}\frac{\mathsf{d}^{2}\Gamma(\pi_{D}^{0})}{\mathsf{d}x\mathsf{d}y} = \frac{\alpha}{4\pi}\frac{(1-x)^{3}}{x}(1+y^{2}+\frac{r^{2}}{x})\left(1+\delta(x,y)\right)\left|F(x)\right|^{2}$$
Transition Form Factor (TFF)

 $F(x) \approx 1 + a x$, a: TFF slope parameter

• π^0 TFF slope measurement at NA62 (kaon decay experiment)

- $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ decay: source of tagged π^{0} decays (BR($K_{2\pi}$) \approx 21%)
- NA62 in 2007: data taking conditions optimized for e^{\pm} from $\mathcal{K}^{\pm}
 ightarrow e^{\pm}
 u_e$
 - \rightarrow Large and clean sample of $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$; $\pi^{0} \rightarrow \gamma e^{+}e^{-}$ decays

Introduction

 π^0 TFF Slope Measurement

 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Branching Ratio Measurement

Summary

Spares 00

π_D^0 : Radiative Corrections

Mikaelian and Smith Phys.Rev. D5 (1972) 1763

Husek, Kampf and Novotny Phys.Rev. D92 (2015) 5, 054027

NA62 Results and Perspectives

 $\xrightarrow{\hspace{1cm}} \rightarrow \text{Corrections included in the simulation} \\ \xrightarrow{\hspace{1cm}} \text{Radiative photon emission simulated} \\ \frac{\text{M. Koval - La Thulie 2016}}{5}$

 $\begin{array}{c|c} & & & & & \\ \mbox{Introduction} & & & & \\ \mbox{oc} \bullet & & & \\ \mbox{oc} \bullet & & \\ \mbox{oc} \bullet$

π_D^0 : d Γ /dx and Transition Form Factor

$$\frac{1}{\Gamma(\pi_{2\gamma}^{0})}\frac{d\Gamma(\pi_{D}^{0})}{dx} = \frac{2\alpha}{3\pi}\frac{(1-x)^{3}}{x}\left(1+\frac{r^{2}}{2x}\right)\sqrt{1-\frac{r^{2}}{x}} (1+\delta(x)) (1+ax)^{2}$$

- π^0 TFF slope expectation from Vector Meson Dominance model: $a \approx 0.03$
- π^0 TFF theoretical models enter hadronic light-by-light scattering (HLbL) contribution to $(g-2)_{\mu}$
- See recent overview and references in: A. Nyffeler, arXiv:1602.03398 [hep-ph]

 \rightarrow Comparison of TFF slope prediction with model independent measurement: important test of the theory models

NA62 Experiment and Detector in 2007

- Main goal: $R_{K} = \Gamma(K_{e2})/\Gamma(K_{\mu 2})$ measurement: Phys. Lett. B 719 (2013) 326
- K^{\pm} beam momentum: (74 \pm 2) GeV/c
- Main trigger: electron from K_{e2} \rightarrow Efficient for π_D^0 decays

Principal subdetectors:

- Magnetic spectrometer (4 DCHs) \rightarrow 4 views/DCH \rightarrow high efficiency $\rightarrow \sigma_p/p = 0.48\% \oplus 0.009\% \cdot p$ [GeV/c]
- Scintillator hodoscope (HOD)
 → Low-level trigger, time measurement (150 ps)
- Liquid Krypton EM calorimeter (LKr) \rightarrow High granularity, quasi-homogeneous $\Rightarrow \sigma_E/E = (3.2/\sqrt{E} \oplus 9/E + 0.42)\%$ [E in GeV] $\Rightarrow \sigma_x = \sigma_y = (4.2/\sqrt{E} \oplus 0.6)$ mm (1.5 mm @ 10GeV) NA62 Results and Perspectives M. Koval - La Thuile 2016

 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Branching Ratio Measurement 000000

$K^{\pm} o \pi^{\pm} \pi^{0}$; $\pi^{0} o \gamma \, e^{+} e^{-}$ Selection

NA62 Data Sample:

- $\bullet\ \sim 2\times 10^{10}$ kaon decays in the decay region
- ~ 5 × 10⁹ boosted π⁰ mesons from K_{2π} Mean free path of π⁰: few μm (negligible)
- ~ 6 × 10⁷ π⁰_D decays produced
 Most important selection criteria:
- Three-track vertex topology
- One photon candidate in LKr calorimeter
- Reconstructed invariant mass of e⁺e⁻γ: 115 MeV/c² < M_{eeγ} < 145 MeV/c²
- Reconstructed invariant mass of $\pi^{\pm}\pi^{0}$: 465 MeV/c² < $M_{2\pi}$ < 510 MeV/c²
- Reconstructed Dalitz x variable: 0.01 < x < 1
- Missing momentum consistent with the beam size

ightarrow 1.05 imes 10⁶ fully reconstructed π_D^0 events

M. Koval - La Thuile 2016

π^{0} TFF Slope: NA62 Preliminary Result Fit procedure:

- Split reconstructed Dalitz x data into equal population bins
- Compare data with simulation (constant TFF slope: a_{sim} = 0.032)
 → To obtain simulated x distribution, corresponding to different a slope: re-weight simulated events with weight w(a) = (1 + a x_{true})² / (1 + a_{sim} x_{true})²
- Minimise $\chi^2(a)$ Data/Simulation comparison wrt a

NA62 Results and Perspectives

Spares

Spares 00

π_D^0 : Systematic Uncertainties

Source	δ <i>α</i> (×10²)
Statistical – Data	0.49
Statistical – MC	0.20
Beam momentum spectrum simulation	0.30
Spectrometer momentum scale	0.15
Spectrometer resolution	0.05
LKr non-linearity and energy scale	0.04
Particle mis-ID	0.08
Accidental background	0.08
Neglected π_D^0 sources in MC	0.01

NA62 preliminary result on π^0 TFF slope parameter:

 $a = (3.70 \pm 0.53_{\text{stat}} \pm 0.36_{\text{syst}}) \times 10^{-2} = (3.70 \pm 0.64) \times 10^{-2}$

Presented for the first time today.

NA62 Results and Perspectives

NEW

Spares

π^0 TFF Slope: World Data

 π^0 TFF Slope Measurements from π^0_D

TFF slope theory expectations:

K. Kampf et al., EPJ C46 (2006), 191. Chiral perturbation theory: $a = (2.90 \pm 0.50) \times 10^{-2}$

M. Hoferichter et al., EPJ C74 (2014), 3180. Dispersion theory: $a = (3.07 \pm 0.06) \times 10^{-2}$

T. Husek et al., EPJ C75 (2015) 12, 586. Two-hadron saturation (THS) model: $a = (2.92 \pm 0.04) \times 10^{-2}$

CELLO measurement:

H. J. Behrend et al., Z. Phys. C49 (1991), 401. Extrapolation of space-like momentum region data fit to VMD model:

$$a = (3.26 \pm 0.26_{stat}) \times 10^{-2}$$

Motivations for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

• FCNC loop process, highly CKM suppressed, theoretically clean

- Dominated by short-distance contribution $(BR \sim |V_{ts}^* V_{td}|^2)$
- Sensitive to new physics, complementary to LHC searches
- SM prediction:

$$\mathsf{BR}_{\mathsf{SM}}(K^+ \to \pi^+ \nu \bar{\nu}) = (9.11 \pm 0.72) \times 10^{-11}$$

[A.J. Buras et al., JHEP 1511 (2015) 033]

• Previous measurement (7 observed events):

$$\mathsf{BR}_{\mathsf{exp}}(K^+ o \pi^+ \nu \bar{\nu}) = (17.3 \, {}^{+11.5}_{-10.5}) \times 10^{-11}$$

[BNL E787/E949: PRL101 (2008) 191802]

NA62 Experiment

Goal

- Branching ratio measurement of $K^+ \to \pi^+ \nu \bar{\nu}$
- 10 % measurement precision, Signal / Background \sim 10
- Collection of O(50) events per year of data taking

Requirements

- Large statistics, $4.5 \times 10^{12} K^+$ decays per year
 - High intensity kaon beam
 - Signal acceptance $\sim 10\%$
- Background rejection factor > 10¹²
- Remaining background known to at least 10% precision

Technique

- High momentum K^+ beam (75 GeV/c) with kaon decay in flight
- Low momentum π^+ selection (ho_π < 35 GeV/c) ightarrow large missing E

Spares

Introduction

 π^0 TFF Slope Measurement

 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Branching Ratio Measurement $\circ \circ \circ \circ \circ \circ \circ$

Summary

Spares 00

NA62 Beamline

- Primary SPS protons (400 GeV/c)
- Protons on Be target: 3 × 10¹² / pulse
- Secondary hadronic beam, p = 75 GeV/c \sim 6% K^+ (others: π^+ , protons)
- Total rate at beam tracker: 750 MHz
- Rate downstream: 10 MHz
- Simultaneous operation with LHC

Signal and Main Backgrounds

- Signal signature: one K^+ track, one π^+ track, **nothing else**
- Backgrounds:
 - 1. K^+ decay modes

92% background rejection by kinematic cuts

- 2. Accidental single track matched with a kaon like track
- Kinematic variable: $m_{miss}^2 = (P_{K^+} P_{\pi^+})^2$
 - Two *m*²_{miss} regions for event candidates are defined

0.02 0.04 0.06 0.08

8% of background not separated by kinematics

 \Rightarrow Need for efficient photon vetoes and particle ID

10

-0.02

0.1 0.12 m²_{miss} [GeV²/c⁴]

Guiding Principles for the NA62 Detectors

- 1. High intensity and precise timing (< 1 ns)
- 2. Good tracking detectors $\rightarrow K^+$ (GTK) and π^+ (Straw) momentum vectors
- 3. Hermetic veto detectors \rightarrow photons (LAV, LKr, SAC, IRC), muons (MUV)
- 4. Particle identification \rightarrow kaons in the beam (KTAG), π/μ separation (RICH)

tion	π^0 TFF Slope Measurement	$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Branching Ratio Measurement	Summary	Spares
	00000000	00000		00

NA62 Status

Introduc

- 2014: NA62 pilot physics run
- $\bullet\,$ 2015: First physics run: \to 2 $\times\,10^{10}$ triggers recorded on tape
- 2016: Resume data taking

- Only small part of data sample presented
- Reconstructed m_{miss}^2 plot:
 - Preliminary calibrations and track reconstruction used
 - No photon and muon rejection
 - No pion/muon separation
- Analysis ongoing, stay tuned!

NA62 Results and Perspectives

M. Koval - La Thuile 2016

Introduction	π^0 TFF Slope Measurement	$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Branching Ratio Measurement	Summary	Spares
00	00000000	000000		00

Summary

1. NA62 π^0 transition form factor slope measurement:

 $a = (3.70 \pm 0.53_{stat} \pm 0.36_{syst}) \times 10^{-2} = (3.70 \pm 0.64) \times 10^{-2}$

- Preliminary result based on NA62 2007 data analysis
- Neutral pions from $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ decays
- \sim 1 million fully reconstructed π_D^0 decays
- Improves TFF precision in the time-like momentum region
- 2. $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ branching ratio measurement status
 - NA62 Beam line fully commissioned
 - NA62 Detector installation completed
 - Physics data taking started in 2015

Introduction	π^0 TFF Slope Measurement	$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Branching Ratio Measurement	Summary	Spares
00	00000000	000000		•0

NA62 Sensitivity

Decay	events / year
$K^+ ightarrow \pi^+ u ar{ u}$ [SM]	45
$K^+ ightarrow \pi^+ \pi^0$	5
$K^+ ightarrow \mu^+ u$	1
$K^+ ightarrow \pi^+ \pi^- \pi^+$	< 1
$K^+ ightarrow \pi^+ \pi^- e^+ u$ + other 3-track decays	< 1
${\cal K}^+ o \pi^+ \pi^0 \gamma$ (IB)	1.5
${\cal K}^+ o \mu^+ u \gamma$ (IB)	0.5
${\cal K}^+ o \mu^+ ({m e}^+) \pi^0 u$, others	negligible
Total background	< 10

Nominal intensity: $4.5 \times 10^{12} \ K^+$ decays in the fiducial region / year Cut and count analysis without any optimization

troduction O	π^0 TFF Slope Measurement	$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Branching Ratio Measurement	Summary	Spares ○●

Further NA62 Physics Program

Decay	Physics	Present limit (90% C.L.) / Result	NA62
$\pi^{+}\mu^{+}e^{-}$	LFV	1.3×10^{-11}	0.7×10^{-12}
$\pi^+\mu^-e^+$	LFV	5.2×10^{-10}	0.7×10^{-12}
$\pi^-\mu^+e^+$	LNV	5.0×10^{-10}	0.7×10^{-12}
$\pi^- e^+ e^+$	LNV	$6.4 imes 10^{-10}$	2×10^{-12}
$\pi^-\mu^+\mu^+$	LNV	1.1×10^{-9}	$0.4 imes 10^{-12}$
$\mu^- \nu e^+ e^+$	LNV/LFV	2.0×10^{-8}	4×10^{-12}
$e^- \nu \mu^+ \mu^+$	LNV	No data	10^{-12}
$\pi^+ X^0$	New Particle	$5.9 \times 10^{-11} m_{X^0} = 0$	10 ⁻¹²
$\pi^+\chi\chi$	New Particle	_	10 ⁻¹²
$\pi^+\pi^+e^-\nu$	$\Delta S \neq \Delta Q$	1.2×10^{-8}	10-11
$\pi^+\pi^+\mu^-\nu$	$\Delta S \neq \Delta Q$	3.0×10^{-6}	10 ⁻¹¹
$\pi^+\gamma$	Angular Mom.	2.3×10^{-9}	10 ⁻¹²
$\mu^+ \nu_h, \nu_h \to \nu \gamma$	Heavy neutrino	Limits up to $m_{\nu_h} = 350 \ MeV$	
R _K	LU	$(2.488 \pm 0.010) \times 10^{-5}$	>×2 better
$\pi^+\gamma\gamma$	χPT	< 500 events	10 ⁵ events
$\pi^0\pi^0e^+\nu$	χPT	66000 events	O(10 ⁶)
$\pi^0\pi^0\mu^+\nu$	χΡΤ	-	O(10 ⁵)