
David Marzocca

Les Rencontres de Physique de la Vallée d'Aoste, 11/03/2016

1

Higgs as a BSM probe

Based on works with various subsets of
{M. Bordone, M.Gonzalez-Alonso, A. Greljo, A. Falkowski, G. Isidori, J. Lindert, D.M., A. Pattori}

Eur. Phys. J. C75 (2015) 3, 128   arXiv: 1412.6038 
Eur. Phys. J. C75 (2015) 7, 341   arXiv: 1504.04018 
Eur. Phys. J. C75 (2015) 8, 385   arXiv: 1507.02555 

Phys.Rev.Lett. 116 (2016) 1, 011801    arXiv: 1508.00581 
arXiv: 1512.06135  Accepted in Eur. Phys. J 



Introduction

2

Run 1 at LHC: discovery of the Higgs and
good measurement of many of its couplings… 
The SM is complete.



Introduction

2

Run 1 at LHC: discovery of the Higgs and
good measurement of many of its couplings… 
The SM is complete.

So far, from direct searches:
⇤NP � mh (1)

To eq.(8) I added a (flavour universal) local interaction

F

ff 0

1 �
�ff 0

m

4
Z

(2)

and keep also quadratic terms (the diagonal ones only, just for an example)

�e+e�µ+µ�

�SM
e+e�µ+µ�

= 

2
ZZ + ZZ (�2.5✏ZeR + 2.9✏ZeL � 2.5✏ZµR + 2.9✏ZµL + 1.5�`L`L � 2.7�`L`R + 1.1�`R`R)+

+ 6.4
�
✏

2
ZeR + ✏

2
ZeL + ✏

2
ZµL

+ ✏

2
ZµR

�
+ 8.4(�2`L`L + 2�2`L`R + �

2
`R`R)+

+ all the mixed terms

(3)
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Scale of New Physics is high

Search for smooth deviations from the SM.

Run 2 (and beyond): High Precision Higgs era.

What else can the LHC tells about the Higgs?
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Learning on BSM from the Higgs: 2-step approach

1
Measure all the physical properties of the Higgs,

in production and decay,
with the highest possible accuracy.
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1
Measure all the physical properties of the Higgs,

in production and decay,
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2

Interpret the results of these measurements
in explicit BSM scenarios to learn about the UV.

Eg. SMEFT, SUSY, Composite Higgs, … 
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in the most general and theoretically unbiased way?
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The goal of pseudo observables is to
encode all the experimental information

on a given physical process
in a few parameters with a

well-defined theoretical interpretation.
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Defined from:

Higgs PO: QFT definition

h

decomposition of on-shell amplitudes (NWA),
based on Lorentz invariance, unitarity, and crossing symmetry,

and a momentum expansion (on measurable quantities)
based on analytic properties of the amplitudes (physical poles),

assuming no new light states in the kinematical regime of interest.



Two-body Higgs decays

6

Higgs PO: parametrize the relevant on-shell amplitude.
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In the SMfrom best SM prediction of the decay rate.
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Higgs PO: parametrize the relevant on-shell amplitude.
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4-fermion Higgs decays and EW Higgs Production

7

By crossing symmetry, all these processes are described in full generality
by the same correlation function.
(in a different kinematical region and with different fermionic currents)

2.2 Pseudo-observables in h ! ff̄ decays

In analogy to the e↵ective couplings of Z and W bosons to fermions, for each fermion
species we can introduce two real e↵ective couplings (yfS,P ) defined by

A(h ! ff̄) = � ip
2

h
(yfS + iyfP )f̄LfR + (yfS � iyfP )f̄RfL

i
. (5)

The “dressing” of this amplitude with soft QED and QCD radiation is straightforward.
The measurement of �(h ! ff̄) determines the combination |yfS|2+ |yfP |2, while the yfP/yfS
ratio can be determined only if the lepton polarization is experimentally accessible. If CP
is conserved only one of the two e↵ective couplings is allowed: if h is a CP-even state,
then only yfS is allowed.

Within the SM, at the tree-level, one finds

yf,SMS =

p
2mf

vF
, yf,SMP = 0 , (6)

where vF = (
p
2GF )�1/2, and GF is the Fermi constant extracted from the muon decay.

The e↵ective couplings yfS,P provide an explicit breaking of the U(1)fL ⇥ U(1)fR flavor
symmetry, which is not assumed to hold in the case of third generation fermions.

3 Higgs decays mediated by electroweak gauge bosons

In this section we provide a unified decomposition of the Higgs decay amplitudes into four
fermions (h ! 4f), a fermion-anti fermion pair and one hard photon (h ! ff̄�), and two
photons (h ! ��). The h ! 4f amplitudes are particularly interesting since they allow us
to investigate the e↵ective hW+W� and hZZ interaction terms, which cannot be probed
on-shell. However, in order to extract such information in a model-independent way, it is
necessary to take into account also the possible additional contributions to h ! 4f due
to contact terms and the e↵ective couplings of the Higgs to photons.

The purpose of our approach is to characterise, as precisely as possible, the three point
function of the Higgs boson and two fermion currents,

h0|T �
Jµ
f (x), J

⌫
f 0(y), h(0)

 |0i , (7)

where all the states are on-shell. This correlation-function is probed by the experiments
in h ! 4f decays, but also in Higgs associated production (pp ! h + W,Z) and in
Higgs production via vector-boson fusion. Extracting the kinematical structure of Eq. (7)
from data will allow us both to determine the e↵ective coupling of h to all the SM gauge
bosons, and also to investigate possible couplings of h to new massive states. The former
are associated to a well-defined double-pole structure in Eq. (7), while the latter can lead
to local interactions with one or no poles.
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Only 3 tensor structures allowed by Lorentz symmetry:
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function of the Higgs boson and two fermion currents,

h0|T �
Jµ
f (x), J

⌫
f 0(y), h(0)

 |0i , (7)

where all the states are on-shell. This correlation-function is probed by the experiments
in h ! 4f decays, but also in Higgs associated production (pp ! h + W,Z) and in
Higgs production via vector-boson fusion. Extracting the kinematical structure of Eq. (7)
from data will allow us both to determine the e↵ective coupling of h to all the SM gauge
bosons, and also to investigate possible couplings of h to new massive states. The former
are associated to a well-defined double-pole structure in Eq. (7), while the latter can lead
to local interactions with one or no poles.
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then only yfS is allowed.
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p
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The e↵ective couplings yfS,P provide an explicit breaking of the U(1)fL ⇥ U(1)fR flavor
symmetry, which is not assumed to hold in the case of third generation fermions.

3 Higgs decays mediated by electroweak gauge bosons

In this section we provide a unified decomposition of the Higgs decay amplitudes into four
fermions (h ! 4f), a fermion-anti fermion pair and one hard photon (h ! ff̄�), and two
photons (h ! ��). The h ! 4f amplitudes are particularly interesting since they allow us
to investigate the e↵ective hW+W� and hZZ interaction terms, which cannot be probed
on-shell. However, in order to extract such information in a model-independent way, it is
necessary to take into account also the possible additional contributions to h ! 4f due
to contact terms and the e↵ective couplings of the Higgs to photons.

The purpose of our approach is to characterise, as precisely as possible, the three point
function of the Higgs boson and two fermion currents,
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f (x), J

⌫
f 0(y), h(0)

 |0i , (7)

where all the states are on-shell. This correlation-function is probed by the experiments
in h ! 4f decays, but also in Higgs associated production (pp ! h + W,Z) and in
Higgs production via vector-boson fusion. Extracting the kinematical structure of Eq. (7)
from data will allow us both to determine the e↵ective coupling of h to all the SM gauge
bosons, and also to investigate possible couplings of h to new massive states. The former
are associated to a well-defined double-pole structure in Eq. (7), while the latter can lead
to local interactions with one or no poles.
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2.2 Pseudo-observables in h ! ff̄ decays

In analogy to the e↵ective couplings of Z and W bosons to fermions, for each fermion
species we can introduce two real e↵ective couplings (yfS,P ) defined by

A(h ! ff̄) = � ip
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(yfS + iyfP )f̄LfR + (yfS � iyfP )f̄RfL
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. (5)

The “dressing” of this amplitude with soft QED and QCD radiation is straightforward.
The measurement of �(h ! ff̄) determines the combination |yfS|2+ |yfP |2, while the yfP/yfS
ratio can be determined only if the lepton polarization is experimentally accessible. If CP
is conserved only one of the two e↵ective couplings is allowed: if h is a CP-even state,
then only yfS is allowed.

Within the SM, at the tree-level, one finds

yf,SMS =

p
2mf

vF
, yf,SMP = 0 , (6)

where vF = (
p
2GF )�1/2, and GF is the Fermi constant extracted from the muon decay.

The e↵ective couplings yfS,P provide an explicit breaking of the U(1)fL ⇥ U(1)fR flavor
symmetry, which is not assumed to hold in the case of third generation fermions.

3 Higgs decays mediated by electroweak gauge bosons

In this section we provide a unified decomposition of the Higgs decay amplitudes into four
fermions (h ! 4f), a fermion-anti fermion pair and one hard photon (h ! ff̄�), and two
photons (h ! ��). The h ! 4f amplitudes are particularly interesting since they allow us
to investigate the e↵ective hW+W� and hZZ interaction terms, which cannot be probed
on-shell. However, in order to extract such information in a model-independent way, it is
necessary to take into account also the possible additional contributions to h ! 4f due
to contact terms and the e↵ective couplings of the Higgs to photons.

The purpose of our approach is to characterise, as precisely as possible, the three point
function of the Higgs boson and two fermion currents,

h0|T �
Jµ
f (x), J

⌫
f 0(y), h(0)

 |0i , (7)

where all the states are on-shell. This correlation-function is probed by the experiments
in h ! 4f decays, but also in Higgs associated production (pp ! h + W,Z) and in
Higgs production via vector-boson fusion. Extracting the kinematical structure of Eq. (7)
from data will allow us both to determine the e↵ective coupling of h to all the SM gauge
bosons, and also to investigate possible couplings of h to new massive states. The former
are associated to a well-defined double-pole structure in Eq. (7), while the latter can lead
to local interactions with one or no poles.
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In analogy to the e↵ective couplings of Z and W bosons to fermions, for each fermion
species we can introduce two real e↵ective couplings (yfS,P ) defined by
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The “dressing” of this amplitude with soft QED and QCD radiation is straightforward.
The measurement of �(h ! ff̄) determines the combination |yfS|2+ |yfP |2, while the yfP/yfS
ratio can be determined only if the lepton polarization is experimentally accessible. If CP
is conserved only one of the two e↵ective couplings is allowed: if h is a CP-even state,
then only yfS is allowed.

Within the SM, at the tree-level, one finds

yf,SMS =

p
2mf

vF
, yf,SMP = 0 , (6)

where vF = (
p
2GF )�1/2, and GF is the Fermi constant extracted from the muon decay.

The e↵ective couplings yfS,P provide an explicit breaking of the U(1)fL ⇥ U(1)fR flavor
symmetry, which is not assumed to hold in the case of third generation fermions.

3 Higgs decays mediated by electroweak gauge bosons

In this section we provide a unified decomposition of the Higgs decay amplitudes into four
fermions (h ! 4f), a fermion-anti fermion pair and one hard photon (h ! ff̄�), and two
photons (h ! ��). The h ! 4f amplitudes are particularly interesting since they allow us
to investigate the e↵ective hW+W� and hZZ interaction terms, which cannot be probed
on-shell. However, in order to extract such information in a model-independent way, it is
necessary to take into account also the possible additional contributions to h ! 4f due
to contact terms and the e↵ective couplings of the Higgs to photons.

The purpose of our approach is to characterise, as precisely as possible, the three point
function of the Higgs boson and two fermion currents,

h0|T �
Jµ
f (x), J

⌫
f 0(y), h(0)

 |0i , (7)

where all the states are on-shell. This correlation-function is probed by the experiments
in h ! 4f decays, but also in Higgs associated production (pp ! h + W,Z) and in
Higgs production via vector-boson fusion. Extracting the kinematical structure of Eq. (7)
from data will allow us both to determine the e↵ective coupling of h to all the SM gauge
bosons, and also to investigate possible couplings of h to new massive states. The former
are associated to a well-defined double-pole structure in Eq. (7), while the latter can lead
to local interactions with one or no poles.
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where vF = (
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The e↵ective couplings yfS,P provide an explicit breaking of the U(1)fL ⇥ U(1)fR flavor
symmetry, which is not assumed to hold in the case of third generation fermions.
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In this section we provide a unified decomposition of the Higgs decay amplitudes into four
fermions (h ! 4f), a fermion-anti fermion pair and one hard photon (h ! ff̄�), and two
photons (h ! ��). The h ! 4f amplitudes are particularly interesting since they allow us
to investigate the e↵ective hW+W� and hZZ interaction terms, which cannot be probed
on-shell. However, in order to extract such information in a model-independent way, it is
necessary to take into account also the possible additional contributions to h ! 4f due
to contact terms and the e↵ective couplings of the Higgs to photons.
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 |0i , (7)
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Figure 7: The correlation between the Zh invariant mass and the pT of the Z boson in Zh
associate production at the 13TeV LHC in the SM (left plot) and for a BSM point ZZ = 1,
✏ZuL = 0.1 (right plot). A very similar correlation is present in the Wh channel.

structure of the form factors appearing in Eq. (9), namely F qiZ
L (q2) or G

qijW
L (q2), see also

Ref. [52]. The invariant mass of the V h system is given by m2
V h = q2 = m2

V +m2
h+2pV ·ph.

In the c.m. frame, we have pV = (EV , ~pT, pz) and ph = (Eh,�~pT,�pz) and

m2
V h = m2

V +m2
h + 2p2T + 2p2z + 2

q
m2

V + p2T + p2z

q
m2

h + p2T + p2z
|p

T

|!1�! 4p2T . (23)

For pz = 0 this equation gives the minimum q2 for a given pT, which can be seen as the left
edge of the distributions in Fig. 7. This is already a valuable information, especially to
address the validity of the momentum expansion. For example the boosted Higgs regime
utilized in many bb̄ analyses implies a potentially dangerous lower cut-o↵ on q2: here a bin
with pT > 300 GeV implies

p
q2 & 630 GeV, which might be a problem for the validity

of the momentum expansion.
In the Wh process, for a leptonic W boson decay, the pT,W can not be reconstructed

independently of the Higgs decay channel. It is tempting to consider the pT of the charged
lepton from the W decay as correlated with the Wh invariant mass. However, we checked
explicitly that any correlation is washed out by the decay.

4.2 NLO QCD corrections in VH

At the inclusive and exclusive level QCD corrections to VH processes are well under
control [26,27,53]. The dominant QCD corrections of Drell-Yan-like type are known fully
di↵erentially up to NNLO [54–56] and on the inclusive level amount to about 30% with
respect to the LO predictions for both Wh and Zh. Remaining scale uncertainties are at
the level of a few percent.

In Fig. 8 we illustrate the NLO QCD corrections to Zh in the SM looking at di↵erential
distributions in pT,Z and mZh, while the qualitative picture is very similar for Wh. The

20

mZh   correlates with the  pTZ.

Sh
e

r
p
a

+O
p

e
n

Lo
o

p
s

µ0 = HT/2

LO
NLO

10

�5

10

�4

10

�3

10

�2

pp ! ZH @ 13 TeV

ds
/d

p T
,Z

[p
b/

G
eV

]

0 100 200 300 400 500

0.4
0.6
0.8

1

1.2
1.4
1.6

pT,Z [GeV]

ds
N

LO
/d

s
LO

Sh
e

r
p
a

+O
p

e
n

Lo
o

p
s

µ0 = HT/2

LO
NLO

10

�5

10

�4

10

�3

10

�2

pp ! ZH @ 13 TeV

ds
/d

m
H

Z
[p

b/
G

eV
]

300 400 500 600 700 800 900 1000

0.8
0.9
1.0
1.1
1.2
1.3

mHZ [GeV]

ds
N

LO
/d

s
LO

Figure 8: NLO correction factors and scale uncertainties for pp ! ZH in the SM in
function of pT,Z (left) and mHZ employing a central scale µ0 = HT/2.

employed setup is as detailed already in Section 3.2, while here we do not apply any phase-
space cuts. Although the natural scale choice for VH clearly is µ0 = Q =

p
(ph + pZ)2,

here we employ a scale µ0 = HT/2. With this scale choice the resulting di↵erential
distributions (to be utilized in the Higgs PO fit) are almost free of shape e↵ects due to
higher-order QCD corrections. A study of a similar stabilization including deformations
in the Higgs PO framework will be performed in the near future.

In the case of Zh besides Drell-Yan-like production there are loop-induced contribu-
tions in gg ! Zh mediated by heavy quark loops, which in particular become important
in the boosted regime with pT,H > 200 GeV [57,58].

Besides QCD corrections also EW corrections give relevant contributions and shape
e↵ects to VH processes due to Sudakov logarithms at large energies. They are known at
NLO EW [59,60] and decrease the LO predictions by about 10% for pT,Z = 300 GeV and
by about 15% for pT,W = 300 GeV. We stress that, as in the VBF case, the dominant
NLO EW e↵ects are factorizable corrections which can be reabsorbed into a redefinition
of the PO.

4.3 Prospects for the Higgs PO in Zh at the HL-LHC

In order to estimate the reach of the HL-LHC, at 13 TeV and 3000 fb�1 of integrated
luminosity, for measuring the Higgs PO in Zh production, we consider the all-leptonic
channel Z ! 2`, h ! 2`2⌫. The 8 TeV ATLAS search in this channel [51] estimated 0.43
signal events with 20.3 fb�1 (Table X of [51]). By rescaling the production cross section
and the luminosity up to the HL-LHC we estimate approximately ⇠ 130 signal events at
the SM rate. Assuming a sample of this size we perform a fit of the pT distribution of the Z
boson. In order to control the validity of the momentum expansion we apply an upper cut
of pmax

T = 280 GeV, which corresponds approximately to q2 ⇡ 600 GeV (see Fig. 7). We
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Figure 1: Leading order parton level simulation of the Higgs VBF production at 13 TeV
pp c.m. energy. Show in blue is the distribution in the opening angle of the color connected
incoming and outgoing quarks ](~p3, ~p1), while in red is the distribution for the opposite pairing,
\(~p3, ~p2). The left plot is for the SM, while the plot on the right is for a specific NP benchmark.
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c.m. energy. Shown here is the density histogram in two variables; the outgoing quark pT and
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SM, while the plot on the right is for a specific NP benchmark.
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Figure 3: Double di↵erential distribution in the two VBF-tagged jet pT for VBF Higgs pro-
duction at 13 TeV LHC. The distribution is normalized such that the total sum of events in all
bins is 1. (Left) Prediction in the SM. (Right) Prediction for NP in ✏WuL = 0.05.

2E = E 0
1 + E 0

2 + Eh, where Eh is the Higgs energy, usually of order mh if the Higgs is
not strongly boosted. In this case E � E 0

i = �Ei ⌧ E since the process is symmetric in
1 $ 2. For each leg, energy and momentum conservation (along the z axis) give

⇢
qzi = E �p

E 02
i � p2Ti ,

q0i = E � E 0
i ,

!
(

q0i � qzi =
p
E 02

i � p2Ti � E 0
i ⇡ � p2

Ti
2E0

i
,

q0i + qzi ⇡ 2�Ei +
p2
Ti

2E0
i
.

. (18)

Putting together these two relations, one finds

q2i ⇡ �p2Ti �
p2Ti�Ei

2E 0
i

+O(p4Ti/E
02) ⇡ �p2Ti , (19)

where in the last step we assumed�Ei ⌧ E 0, i.e. the Higgs being produced near threshold.
In order to confirm the above conclusion, in Fig. 2 we show a density histogram in

two variables: the (observable) pT of the outgoing jet and the (unobservable) momentum
transfer

p�q2 obtained from the correct color flow pairing (the left and the right plots
are for the SM and for a specific NP benchmark, respectively). These plots indicate a
very strong correlation of the jet pT with the momentum transfer

p�q2 associated with
the correct color pairing. We stress that this conclusion holds both within and beyond
the SM. Therefore, we encourage the experimental collaborations to report the unfolded
measurement of the double di↵erential distributions in the two VBF tagged jet pT’s:
F̃ (pTj

1

, pTj
2

). This measurable distribution is indeed closely related to the form factor
entering the amplitude decomposition, FL(q21, q

2
2), and encode (in a model-independent

way) the dynamical information about the high-energy behavior of the process. More-
over, as we will discuss in Section 3.3, the extraction of the PO in VBF must be done

13

Double-differential distribution in the jets pT.

PZ(q
2) = q2 �m2

Z + imZ�Z (16)

✏CP
X = Im ✏W `L = 0 (17)

X ! 1, ✏X ! 0 (18)

hZµZ
µ, hZµ@⌫Vµ⌫ hVµ⌫V

µ⌫ h"µ⌫⇢�Vµ⌫V⇢� hZµf̄�
µf, hZµ@⌫Vµ⌫ (19)

V = Z, � (20)

ZZ ,Z� ,�� , ✏ZZ ,

✏CP
Z� , ✏

CP
�� , ✏CP

ZZ ,

✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR

(21)

WW , ✏WW , ✏CP
WW ,

✏We, ✏Wµ, (complex)

(22)

✏SM-1L
�� ' 3.8⇥ 10�3 ,

✏SM-1L
Z� ' 6.7⇥ 10�3

(23)

WW � ZZ = �2

g

⇣p
2✏WeL + 2cw✏ZeL

⌘
(24)

|yfS |2 + |yfP |2 (25)

|✏�� |2 + |✏CP
�� |2 (26)

�f ��� (27)

Jµ
f (x) = f̄(x)�µf(x) (28)

d�NLO

dm01dm02dx1dx2
=

d�LO

dm01dm02
!(x1)!(x2) (29)

d�NLO

dm1dm2
x =

m2

m2
0

(30)

�(obs)i =
X

j

↵ij
cj
⇤2

+O
✓

1

⇤4

◆
(31)

↵ij (32)

F (q21, q
2
2) ! F̃ (p2T1, p

2
T2) (33)

5

h

Jq

Jq’

qi2 correlates with the pTjeti

qi2 ~ pTjeti
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Parameter counting and symmetry assumptions

3/4

Higgs (EW) decay amplitudes

Amplitudes Flavor + CP Flavor Non Univ. CPV
h ! gg,2eg,2µg kZZ,kZg

,k
gg

,eZZ
eZµL ,eZµR e

CP
ZZ ,l

CP
Zg

,lCP
gg4e,4µ,2e2µ eZeL ,eZeR

h ! 2e2n ,2µ2n ,enµn

kWW ,eWW eZn

µ

, Re(eW µL) e

CP
WW , Im(eWeL)

eZne , Re(eWeL) Im(eW µL)

Higgs (EW) production amplitudes

Amplitudes Flavor + CP Flavor Non Univ. CPV
VBF neutral curr.

⇥

kZZ,kZg

,eZZ
⇤

eZcL ,eZcR
h

e

CP
ZZ ,l

CP
Zg

i

and Zh eZuL ,eZuR ,eZdL ,eZdR eZsL ,eZsR

VBF charged curr. [ kWW ,eWW ] Re(eWcL) Im(eWuL)
and Wh Re(eWuL) Im(eWcL)

EW production and decay modes, with custodial symmetry

Amplitudes Flavor + CP Flavor Non Univ. CPV

production & decays kZZ,kZg

,eZZ e

CP
ZZ ,l

CP
Zg

VBF and VH only eZuL ,eZuR ,eZdL ,eZdR

eZcL ,eZcR

eZsL ,eZsR

decays only k

gg

,eZeL ,eZeR , Re(eWeL) eZµL ,eZµR l

CP
gg

Table 2: Summary of the effective couplings PO appearing in EW Higgs decays and in the VBF and
VH production cross-sections (see main text). The terms between square brakes in the middle table are
the PO present both in production and decays. The last table denote the PO needed to describe both
production and decays under the assumption of custodial symmetry.

29

EW decay and production:

6

4

4

1

15 coefficients for 12 independent processes & lots of differential distributions!!

Test UV symmetries!



Tool for signal simulation: NLO description

14

Higgs PO have been implemented in a FeynRules/UFO model:

www.physik.uzh.ch/data/HiggsPO/

MadGraph5 / Sherpa

× ≃   1% precision (NLO EW)
differential & for BSM points

QED / QCD soft radiationHard process

Photos / Pythia

Decays:

h→ 4   checked with Prophecy4f

EW Production @ NLO:

NLO QCD description
differential & for BSM points

(in progress)

OpenLoops
× Sherpa

Matched showering at NLO

http://www.physik.uzh.ch/data/HiggsPO/


The Linear SM Effective Field Theory

Assuming h(125)  is a SU(2)L doublet:
(linear) SMEFT
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M. González-Alonso /10EFT analyses of  NP

Pseudo-observables in Higgs decays (linear EFT)

Exampl
e:

What’s the room for NP in 
Higgs decays taking into 

account LEP results?

Z

[MGA, Greljo, Isidori & Marzocca, arXiv:1504.xxxx]

and ⇤NP � mh (1)

To eq.(8) I added a (flavour universal) local interaction

F

ff 0

1 �
�ff 0

m

4
Z

(2)

and keep also quadratic terms (the diagonal ones only, just for an example)

�e+e�µ+µ�

�SM
e+e�µ+µ�

= 

2
ZZ + ZZ (�2.5✏ZeR + 2.9✏ZeL � 2.5✏ZµR + 2.9✏ZµL + 1.5�`L`L � 2.7�`L`R + 1.1�`R`R)+

+ 6.4
�
✏

2
ZeR + ✏

2
ZeL + ✏

2
ZµL

+ ✏

2
ZµR

�
+ 8.4(�2`L`L + 2�2`L`R + �

2
`R`R)+

+ all the mixed terms

(3)

See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m

2
Z/⇤

2
and �X ⇠ m

4
Z/⇤

4
, and therefore to neglect the quadratic

terms.

e = eL, eR, µ = µL, µR (4)

A =i

2m2
Z

vF
(ē�↵e)(µ̄��µ)⇥

✓
ZZ

g

e
Zg

µ
Z

PZ(q21)PZ(q22)
+

✏Ze

m

2
Z

g

µ
Z

PZ(q22)
+

✏Zµ

m

2
Z

g

e
Z

PZ(q21)

◆
g

↵�+

+

✓
✏ZZ

g

e
Zg

µ
Z

PZ(q21)PZ(q22)
+ Z�✏

SM-1L
Z�

✓
eQµg

e
Z

q

2
2PZ(q21)

+
eQeg

µ
Z

q

2
1PZ(q22)

◆
+ ��✏

SM-1L
��

e

2
QeQµ

q

2
1q

2
2

◆
⇥ q1 · q2 g

↵� � q2
↵
q1

�

m

2
Z

+

+

✓
✏

CP
ZZ

g

e
Zg

µ
Z

PZ(q21)PZ(q22)
+ ✏

CP
Z�

✓
eQµg

e
Z

q

2
2PZ(q21)

+
eQeg

µ
Z

q

2
1PZ(q22)

◆
+ ✏

CP
��

e

2
QeQµ

q

2
1q

2
2

◆
"

↵�⇢�
q2⇢q1�

m

2
Z

�

(5)

✏Zf =
2mZ

v

⇣
�g

Zf � (c2✓T
3
f + s

2
✓Yf )13�g1,z + t

2
✓Yf13��

⌘
(6)

�✏ZZ = �✏�� +
2

t2✓
�✏Z� �

1

c

2
✓

�� (7)

�✏X = ✏X � ✏

SM
X (8)

1

Scale of New Physics is high

Integrate out the heavy BSM states.
Low energy theory specified by  Symmetries   &   Field content
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F
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4
Z
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and keep also quadratic terms (the diagonal ones only, just for an example)
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�SM
e+e�µ+µ�
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ZZ + ZZ (�2.5✏ZeR + 2.9✏ZeL � 2.5✏ZµR + 2.9✏ZµL + 1.5�`L`L � 2.7�`L`R + 1.1�`R`R)+

+ 6.4
�
✏

2
ZeR + ✏

2
ZeL + ✏

2
ZµL

+ ✏

2
ZµR

�
+ 8.4(�2`L`L + 2�2`L`R + �

2
`R`R)+

+ all the mixed terms

(3)

See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m

2
Z/⇤

2
and �X ⇠ m

4
Z/⇤

4
, and therefore to neglect the quadratic

terms.

e = eL, eR, µ = µL, µR (4)

A =i

2m2
Z

vF
(ē�↵e)(µ̄��µ)⇥

✓
ZZ

g

e
Zg

µ
Z

PZ(q21)PZ(q22)
+

✏Ze

m

2
Z

g

µ
Z

PZ(q22)
+

✏Zµ

m

2
Z

g

e
Z

PZ(q21)

◆
g

↵�+

+

✓
✏ZZ

g

e
Zg

µ
Z

PZ(q21)PZ(q22)
+ Z�✏

SM-1L
Z�

✓
eQµg

e
Z

q

2
2PZ(q21)

+
eQeg

µ
Z

q

2
1PZ(q22)

◆
+ ��✏

SM-1L
��

e

2
QeQµ

q

2
1q

2
2

◆
⇥ q1 · q2 g

↵� � q2
↵
q1

�

m

2
Z

+

+

✓
✏

CP
ZZ

g

e
Zg

µ
Z

PZ(q21)PZ(q22)
+ ✏

CP
Z�

✓
eQµg

e
Z

q

2
2PZ(q21)

+
eQeg

µ
Z

q

2
1PZ(q22)

◆
+ ✏

CP
��

e

2
QeQµ

q

2
1q

2
2

◆
"

↵�⇢�
q2⇢q1�

m

2
Z

�

(5)

✏Zf =
2mZ

v

⇣
�g

Zf � (c2✓T
3
f + s

2
✓Yf )13�g1,z + t

2
✓Yf13��

⌘
(6)

�✏ZZ = �✏�� +
2

t2✓
�✏Z� �

1

c

2
✓

�� (7)

�✏X = ✏X � ✏

SM
X (8)

1

Scale of New Physics is high

Integrate out the heavy BSM states.
Low energy theory specified by  Symmetries   &   Field content

Standard Model
Lagrangian (d ≤ 4)

Leading deformations of the SM

L = LSM
+

X

i

ci
⇤

2
Od=6

i + (dim > 6) (1)

⇤M

�
⇠ 10

14GeV (2)

⇤ & O(TeV) ⇤NP � mh (3)

OH =

1

2

(@µ|H|2)2 (4)

OT =

1

2

✓
H†$DµH

◆2

(5)

OW = ig

✓
H†⌧a

$
DµH

◆
D⌫W a

µ⌫ (6)

OB = ig0YH

✓
H†

$
DµH

◆
@⌫Bµ⌫ (7)

O2W = �1

2

(DµW a
µ⌫)

2 (8)

O2B = �1

2

(@µBµ⌫)
2 (9)

OBB = g02|H|2Bµ⌫B
µ⌫ (10)

OWB = gg0H†�aHW a
µ⌫B

µ⌫ (11)
OWW = g2|H|2W a

µ⌫W
aµ⌫ (12)

O3W =

1

3!

g✏abcW
a ⌫
µ W b

⌫⇢W
c ⇢µ (13)

(14)

ˆS = ĉS(mZ) = ĉS(⇤) +
g2

16⇡2

1

6

ĉH log

⇤

mZ
+ . . .

ˆT = ĉT (mZ) = ĉT (⇤)� g02

16⇡2

3

2

ĉH
⇤

mZ
+ . . .

(15)

ĉi ⇠ m2
W

⇤

2
ci (16)

1

Assuming L and B conservation

59 independent dim-6 operators if flavour universality.
2499 parameters for a generic flavour structure.

[Grzadkowski et al. 1008.4884, Alonso et al. 1312.2014]
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16

Higgs decay & production

Z couplings  δgZf

The same operator can contribute to different processes.

For example: OHf = i(H† $
DµH)f̄�µf = �1

2

p
g2 + g02Zµ(v + h)2f̄�µf (1)

To eq.(8) I added a (flavour universal) local interaction

F ff 0

1 � �ff 0

m4
Z

(2)

and keep also quadratic terms (the diagonal ones only, just for an example)

�e+e�µ+µ�

�SM
e+e�µ+µ�

= 2ZZ + ZZ (�2.5✏ZeR + 2.9✏ZeL � 2.5✏ZµR + 2.9✏ZµL + 1.5�`L`L � 2.7�`L`R + 1.1�`R`R)+

+ 6.4
�
✏2ZeR + ✏2ZeL + ✏2ZµL

+ ✏2ZµR

�
+ 8.4(�2`L`L + 2�2`L`R + �2`R`R)+

+ all the mixed terms

(3)

See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m2
Z/⇤

2
and �X ⇠ m4

Z/⇤
4
, and therefore to neglect the quadratic

terms.

h ! eReLµLµR / yeyµ (4)

O(x) = h(x) ē(x)�µe(x) µ̄(x)�
µµ(x) (5)

e = eL, eR, µ = µL, µR (6)

A =i
2m2

Z

vF
(ē�↵e)(µ̄��µ)⇥

✓
ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+

✏Ze

m2
Z

gµZ
PZ(q22)

+
✏Zµ

m2
Z

geZ
PZ(q21)

◆
g↵�+

+

✓
✏ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+ Z�✏

SM-1L
Z�

✓
eQµgeZ

q22PZ(q21)
+

eQeg
µ
Z

q21PZ(q22)

◆
+ ��✏

SM-1L
��

e2QeQµ

q21q
2
2

◆
⇥ q1 · q2 g↵� � q2↵q1�

m2
Z

+

+

✓
✏CP
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geZg
µ
Z

PZ(q21)PZ(q22)
+ ✏CP

Z�

✓
eQµgeZ

q22PZ(q21)
+

eQeg
µ
Z

q21PZ(q22)

◆
+ ✏CP

��
e2QeQµ

q21q
2
2

◆
"↵�⇢�q2⇢q1�

m2
Z

�

(7)

✏Zf =
2mZ

v

⇣
�gZf � (c2✓T

3
f + s2✓Yf )13�g1,z + t2✓Yf13��

⌘
(8)

�✏ZZ = �✏�� +
2

t2✓
�✏Z� � 1

c2✓
�� (9)

�✏X = ✏X � ✏SMX (10)

1

The power of the EFT: relating different observables
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Triple Gauge Couplings
δκz,  δg1,z,  λZ
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Higgs decay & production

Z couplings  δgZf

The same operator can contribute to different processes.

For example: OHf = i(H† $
DµH)f̄�µf = �1

2

p
g2 + g02Zµ(v + h)2f̄�µf (1)

To eq.(8) I added a (flavour universal) local interaction

F ff 0

1 � �ff 0

m4
Z

(2)

and keep also quadratic terms (the diagonal ones only, just for an example)

�e+e�µ+µ�

�SM
e+e�µ+µ�

= 2ZZ + ZZ (�2.5✏ZeR + 2.9✏ZeL � 2.5✏ZµR + 2.9✏ZµL + 1.5�`L`L � 2.7�`L`R + 1.1�`R`R)+

+ 6.4
�
✏2ZeR + ✏2ZeL + ✏2ZµL

+ ✏2ZµR

�
+ 8.4(�2`L`L + 2�2`L`R + �2`R`R)+

+ all the mixed terms

(3)

See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m2
Z/⇤

2
and �X ⇠ m4

Z/⇤
4
, and therefore to neglect the quadratic

terms.

h ! eReLµLµR / yeyµ (4)

O(x) = h(x) ē(x)�µe(x) µ̄(x)�
µµ(x) (5)

e = eL, eR, µ = µL, µR (6)

A =i
2m2

Z

vF
(ē�↵e)(µ̄��µ)⇥

✓
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geZg
µ
Z

PZ(q21)PZ(q22)
+

✏Ze

m2
Z

gµZ
PZ(q22)

+
✏Zµ
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Z

geZ
PZ(q21)

◆
g↵�+

+

✓
✏ZZ
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Z

PZ(q21)PZ(q22)
+ Z�✏
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Z�

✓
eQµgeZ
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+

eQeg
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Z

q21PZ(q22)

◆
+ ��✏
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��

e2QeQµ

q21q
2
2

◆
⇥ q1 · q2 g↵� � q2↵q1�

m2
Z

+

+

✓
✏CP
ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+ ✏CP

Z�

✓
eQµgeZ

q22PZ(q21)
+

eQeg
µ
Z

q21PZ(q22)

◆
+ ✏CP

��
e2QeQµ

q21q
2
2

◆
"↵�⇢�q2⇢q1�

m2
Z

�

(7)

✏Zf =
2mZ

v

⇣
�gZf � (c2✓T

3
f + s2✓Yf )13�g1,z + t2✓Yf13��

⌘
(8)

�✏ZZ = �✏�� +
2

t2✓
�✏Z� � 1

c2✓
�� (9)

�✏X = ✏X � ✏SMX (10)

1

The power of the EFT: relating different observables

Use LEP 1 and LEP 2 data
to obtain bounds on some Higgs PO.

Combine LEP data with Higgs data
to derive stronger constraints for the EFT.
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The power of the EFT: relating different observables

Assuming the strong LEP I constraints (≲1%)
and MFV, only 10 independent combinations of coefficients contribute at 
tree-level to Higgs and LEP II (WW) observables. [Corbett et al. 2013; J. Elias-Miro et al. 2013;

Pomarol Riva 2013; Gupta et al 2014; Falkowski 2015]

[Pomarol Riva 2013; Efrati et al. 2015; Berthier, Trott 2015]

LEP II (WW)
Higgs
LEP II + Higgs

!1.5 !1.0 !0.5 0.0
!1.0

!0.5

0.0

0.5

1.0

∆g1,z

∆ΚΓ

Constraints on TGCs from a Global fit

LEP II data alone suffers from a flat 
direction in the TGC fit.

Higgs data (mainly via VH and VBF production) 
is sensitive to a different direction.

+

=

Together they provide strong and robust
constraints on the TGC.

[Falkowski, Riva  1411.0669]

[Falkowski 1505.00046]

[Falkowski, Gonzalez-Alonso, Greljo, D.M.  PRL 116 (2016) 1, 011801 - arXiv 1508.00581]

All other coefficients have been marginalised.
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Constraints on the Higgs PO in the linear EFT

e.g h→4 :

To eq.(8) I added a (flavour universal) local interaction

F

ff 0

1 �
�ff 0

m

4
Z

(1)

and keep also quadratic terms (the diagonal ones only, just for an example)

�e+e�µ+µ�

�SM
e+e�µ+µ�
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2
ZZ + ZZ (�2.5✏ZeR + 2.9✏ZeL � 2.5✏ZµR + 2.9✏ZµL + 1.5�`L`L � 2.7�`L`R + 1.1�`R`R)+

+ 6.4
�
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2
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2
ZeL + ✏

2
ZµL

+ ✏

2
ZµR

�
+ 8.4(�2`L`L + 2�2`L`R + �

2
`R`R)+

+ all the mixed terms

(2)

See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m

2
Z/⇤

2
and �X ⇠ m

4
Z/⇤

4
, and therefore to neglect the quadratic

terms.

e = eL, eR, µ = µL, µR (3)

A =i
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✓
ZZ

g

e
Zg

µ
Z

PZ(q21)PZ(q22)
+

✏Ze

m

2
Z

g

µ
Z

PZ(q22)
+

✏Zµ

m

2
Z

g

e
Z

PZ(q21)

◆
g

↵�+

+

✓
✏ZZ

g

e
Zg

µ
Z

PZ(q21)PZ(q22)
+ Z�✏

SM-1L
Z�

✓
eQµg

e
Z

q

2
2PZ(q21)

+
eQeg

µ
Z

q

2
1PZ(q22)

◆
+ ��✏

SM-1L
��

e

2
QeQµ

q

2
1q

2
2

◆
⇥ q1 · q2 g

↵� � q2
↵
q1

�

m

2
Z

+

+

✓
✏

CP
ZZ

g

e
Zg

µ
Z

PZ(q21)PZ(q22)
+ ✏

CP
Z�

✓
eQµg

e
Z

q

2
2PZ(q21)

+
eQeg

µ
Z

q

2
1PZ(q22)

◆
+ ✏

CP
��

e

2
QeQµ

q

2
1q

2
2

◆
"

↵�⇢�
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m

2
Z

�

(4)

✏Zf =
2mZ

v

⇣
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3
f + s

2
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2
✓Yf13��
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To eq.(8) I added a (flavour universal) local interaction

F

ff 0

1 �
�ff 0

m

4
Z

(1)

and keep also quadratic terms (the diagonal ones only, just for an example)

�e+e�µ+µ�

�SM
e+e�µ+µ�

= 

2
ZZ + ZZ (�2.5✏ZeR + 2.9✏ZeL � 2.5✏ZµR + 2.9✏ZµL + 1.5�`L`L � 2.7�`L`R + 1.1�`R`R)+

+ 6.4
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2
ZeL + ✏

2
ZµL

+ ✏

2
ZµR

�
+ 8.4(�2`L`L + 2�2`L`R + �

2
`R`R)+

+ all the mixed terms

(2)

See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m

2
Z/⇤

2
and �X ⇠ m

4
Z/⇤

4
, and therefore to neglect the quadratic

terms.

e = eL, eR, µ = µL, µR (3)

A =i

2m2
Z

vF
(ē�↵e)(µ̄��µ)⇥
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ZZ

g

e
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+
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1

[Gonzalez-Alonso, Greljo, Isidori, D.M. 1504.04018]

We match the Higgs PO to the SM EFT:  relations with LEP observables.
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Constraints on the Higgs PO in the linear EFT

e.g h→4 :

To eq.(8) I added a (flavour universal) local interaction

F

ff 0

1 �
�ff 0

m

4
Z

(1)

and keep also quadratic terms (the diagonal ones only, just for an example)

�e+e�µ+µ�

�SM
e+e�µ+µ�
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2
ZZ + ZZ (�2.5✏ZeR + 2.9✏ZeL � 2.5✏ZµR + 2.9✏ZµL + 1.5�`L`L � 2.7�`L`R + 1.1�`R`R)+

+ 6.4
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+ ✏
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+ 8.4(�2`L`L + 2�2`L`R + �

2
`R`R)+

+ all the mixed terms

(2)

See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m

2
Z/⇤

2
and �X ⇠ m

4
Z/⇤

4
, and therefore to neglect the quadratic

terms.

e = eL, eR, µ = µL, µR (3)
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To eq.(8) I added a (flavour universal) local interaction

F

ff 0
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�ff 0
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4
Z

(1)

and keep also quadratic terms (the diagonal ones only, just for an example)
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+ all the mixed terms

(2)

See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m

2
Z/⇤

2
and �X ⇠ m

4
Z/⇤

4
, and therefore to neglect the quadratic

terms.
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[Gonzalez-Alonso, Greljo, Isidori, D.M. 1504.04018]

We match the Higgs PO to the SM EFT:  relations with LEP observables.

6

with the correlation matrix:

⇢ =

0

BBBBBBBBBBBB@

1 �.53 .20 �.49 .47 .15 �.41 .63 �.19 .22
· 1 .56 �.29 .31 �.13 .20 �.22 �.38 �.85
· · 1 �.91 .91 .00 �.13 .26 .35 �.79
· · · 1 �.999 �.06 .25 �.42 �.27 .59
· · · · 1 .06 �.24 .40 .27 �.06
· · · · · 1 �.88 .30 .06 .07
· · · · · · 1 �.22 .10 �.06
· · · · · · · 1 .30 .01
· · · · · · · · 1 �.38
· · · · · · · · · 1

1

CCCCCCCCCCCCA

.

(A.11)

h ! 4` pseudo-observables

Here we report the bounds on the Higgs pseudo-
observables relevant to h ! 4` decays, obtained via a
tree-level matching with the D=6 operators in the Higgs
basis [23]. At this level, only five pseudo-observables are
independent and the constraints we find are:

0

BBB@

ZZ

✏Z`L

✏Z`R

Z�

��

1

CCCA
=

0

BBB@

0.85± 0.17
�0.0001± 0.0078
�0.025± 0.015

0.96± 1.6
0.88± 0.19

1

CCCA
,

⇢ =

0

BBB@

1 .72 .60 .19 .83
· 1 .35 �.16 .62
· · 1 .02 .47
· · · 1 .20
· · · · 1

1

CCCA
.

(A.12)

Appendix B: Single Z and W Drell-Yan production

Using Madgraph 5 [44] we compute the leading order
(LO) contribution of the D=6 operators in the Higgs
basis to the Z- and W -boson Drell-Yan production cross-

section at 8 TeV in the flavor-general EFT finding:

�LO(pp ! Z)

�SM,LO(pp ! Z)
= 1 + 2.20 �gZu

L � 1.01 �gZu
R

� 1.89 �gZd
L + 0.34 �gZd

R ,

�LO(pp ! W )

�SM,LO(pp ! W )
= 1 + 1.73 (�gZu

L � �gZd
L ) ,

(B.1)

where �SM,LO(pp ! Z) ⇡ 23.9 nb and �SM,LO(pp !
W ) ⇡ 84.5 nb. From Ref. [17], we get the experimental
constraints from 8 TeV data:

�exp(pp ! Z ! `+`�)

�SM, NNLO(pp ! Z ! `+`�)
= 1.02± 0.05. (B.2)

�exp(pp ! W ! `⌫)

�SM, NNLO(pp ! W ! `⌫)
= 1.00± 0.04. (B.3)

As explained in the main text, we assume that the NLO
QCD corrections largely cancel in the BSM vs SM ratio
of Eq. (B.1), and that NLO EW corrections can be ne-
glected. Taking into account that NP e↵ects in leptonic Z
decays are negligible at this level of precision [10], we use
these experimental results to improve the bounds on the
�gV q

L,R coe�cients obtained from LEP1 data in Ref. [10].
These limits are used to constrain the extra contribu-

tion to the production modes VBF, Wh and Zh due to
such anomalous W and Z couplings, which are given by

��V BF

�SM
VBF

= �6.7�gZu
L + 0.9�gZu

R + 6.1�gZd
L � 0.28�gZd

R ,

��Wh

�SM
Wh

= 28�gZu
L � 28�gZd

L ,

��Zh

�SM
Zh

= 31�gZu
L � 14�gZu

R � 23�gZd
L + 4.3�gZd

R . (B.4)
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Constraints on the Higgs PO in the linear EFT

e.g h→4 :

To eq.(8) I added a (flavour universal) local interaction
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We match the Higgs PO to the SM EFT:  relations with LEP observables.
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with the correlation matrix:

⇢ =

0
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· · 1 �.91 .91 .00 �.13 .26 .35 �.79
· · · 1 �.999 �.06 .25 �.42 �.27 .59
· · · · 1 .06 �.24 .40 .27 �.06
· · · · · 1 �.88 .30 .06 .07
· · · · · · 1 �.22 .10 �.06
· · · · · · · 1 .30 .01
· · · · · · · · 1 �.38
· · · · · · · · · 1
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(A.11)

h ! 4` pseudo-observables

Here we report the bounds on the Higgs pseudo-
observables relevant to h ! 4` decays, obtained via a
tree-level matching with the D=6 operators in the Higgs
basis [23]. At this level, only five pseudo-observables are
independent and the constraints we find are:
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Appendix B: Single Z and W Drell-Yan production

Using Madgraph 5 [44] we compute the leading order
(LO) contribution of the D=6 operators in the Higgs
basis to the Z- and W -boson Drell-Yan production cross-

section at 8 TeV in the flavor-general EFT finding:

�LO(pp ! Z)

�SM,LO(pp ! Z)
= 1 + 2.20 �gZu

L � 1.01 �gZu
R

� 1.89 �gZd
L + 0.34 �gZd

R ,

�LO(pp ! W )

�SM,LO(pp ! W )
= 1 + 1.73 (�gZu

L � �gZd
L ) ,

(B.1)

where �SM,LO(pp ! Z) ⇡ 23.9 nb and �SM,LO(pp !
W ) ⇡ 84.5 nb. From Ref. [17], we get the experimental
constraints from 8 TeV data:

�exp(pp ! Z ! `+`�)

�SM, NNLO(pp ! Z ! `+`�)
= 1.02± 0.05. (B.2)

�exp(pp ! W ! `⌫)

�SM, NNLO(pp ! W ! `⌫)
= 1.00± 0.04. (B.3)

As explained in the main text, we assume that the NLO
QCD corrections largely cancel in the BSM vs SM ratio
of Eq. (B.1), and that NLO EW corrections can be ne-
glected. Taking into account that NP e↵ects in leptonic Z
decays are negligible at this level of precision [10], we use
these experimental results to improve the bounds on the
�gV q

L,R coe�cients obtained from LEP1 data in Ref. [10].
These limits are used to constrain the extra contribu-

tion to the production modes VBF, Wh and Zh due to
such anomalous W and Z couplings, which are given by

��V BF

�SM
VBF

= �6.7�gZu
L + 0.9�gZu

R + 6.1�gZd
L � 0.28�gZd

R ,

��Wh

�SM
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= 28�gZu
L � 28�gZd
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��Zh

�SM
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= 31�gZu
L � 14�gZu
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R . (B.4)
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From these bounds we can extract
precise predictions for Higgs data,
such as di-lepton invariant mass 
spectra.

Crucial to test these predictions from data!

Any measured deviation would have deep physical consequences:

non-linear realization of EW symmetry, flavor non-universality, …
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Higgs PO

Characterize all the measurable properties of on-shell Higgs boson processes

in a robust and model-independent way.

This information can be fed to specific BSM models, such as SMEFT,

which allow us to derive:

1) stronger bounds via combination of different processes

2) predictions to be tested directly in Higgs physics.
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Figure 1.12: Average over measurements of the hadronic cross-sections (top) and of the muon
forward-backward asymmetry (bottom) by the four experiments, as a function of centre-of-mass
energy. The full line represents the results of model-independent fits to the measurements, as
outlined in Section 1.5. Correcting for QED photonic effects yields the dashed curves, which
define the Z parameters described in the text.
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from ∆rw implicitly through sin2 θW, as can be seen in Equation 1.26. Here the implicit
correction is of opposite sign, and in fact dominates the direct correction, so that the mt and
mH dependences of sin2 θlept

eff are opposite in sign from the dependences of ∆κse described in
Equation 1.20.

The discussion of radiative corrections given here is leading order only. The actual calcu-
lations used in fits (e.g., Chapters 7 and 8) are performed to higher order, using the programs
TOPAZ0 [30] and ZFITTER [31]. The interested reader is encouraged to consult the authori-
tative discussion in Reference 32.

1.5 The Process e+e− → ff

The differential cross-sections for fermion pair production (see Figure 1.1) around the Z res-
onance can be cast into a Born-type structure using the complex-valued effective coupling
constants given in the previous section. Effects from photon vacuum polarisation are taken
into account by the running electromagnetic coupling constant (Equation 1.30), which also ac-
quires a small imaginary piece. Neglecting initial and final state photon radiation, final state
gluon radiation and fermion masses, the electroweak kernel cross-section for unpolarised beams
can thus be written as the sum of three contributions, from s-channel γ and Z exchange and
from their interference [32],

2s

π

1

N f
c

dσew

dcos θ
(e+e− → ff) =

|α(s)Qf |2 (1 + cos2 θ)
︸ ︷︷ ︸

σγ

−8ℜ
{

α∗(s)Qfχ(s)
[

GVeGVf(1 + cos2 θ) + 2GAeGAfcos θ
]}

︸ ︷︷ ︸

γ–Z interference

+16|χ(s)|2 [(|GVe|2 + |GAe|2)(|GVf |2 + |GAf |2)(1 + cos2 θ)
+8ℜ {GVeGAe

∗}ℜ {GVfGAf
∗} cos θ]

︸ ︷︷ ︸

σZ

(1.34)

with:

χ(s) =
GFm2

Z

8π
√

2

s

s − m2
Z + isΓZ/mZ

, (1.35)

where θ is the scattering angle of the out-going fermion with respect to the direction of the e−.
The colour factor N f

c is one for leptons (f=νe, νµ, ντ , e, µ, τ) and three for quarks (f=d, u, s,
c, b), and χ(s) is the propagator term with a Breit-Wigner denominator with an s-dependent
width.

If the couplings are left free to depart from their SM values, the above expression allows
the resonance properties of the Z to be parametrised in a very model-independent manner.
Essentially the only assumptions imposed by Equation 1.34 are that the Z possesses vector
and axial-vector couplings to fermions, has spin 1, and interferes with the photon. Certain SM
assumptions are nevertheless employed when extracting and interpreting the couplings; these
are discussed in Sections 1.5.4 and 2.5.3.
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Unfold QED (and/or QCD) soft radiation effect

Parametrize the shape with some PO
defined at amplitude level:

Fit the PO from data3)

LEP-1 Strategy: on-shell Z decays
[hep-ex/0509008; Bardin, Grunewald, Passarino ’99]

The goal was to parametrise on-shell Z decays as much model-independently as possible.

Lineshape

3 Pseudo-Observables

There remains to be investigated the systematic errors arising from theory and
possible ambiguities in the definition of the MI fit parameters, the POs.

3.1 Definition of Pseudo-Observables

Independent of the particular realization of the effective couplings they are
complex-valued functions, due to the imaginary parts of the diagrams. In the
past this fact had some relevance only for realistic observables while for pseudo-
observables they were conventionally defined to include only real parts. This
convention has changed lately with the introduction of next-to-leading correc-
tions: imaginary parts, although not next-to-leading in a strict sense, are size-
able two-loop effects. These are enhanced by factors π2 and sometimes also
by a factor Nf , with Nf being the total number of fermions (flavour⊗ colour)
in the SM. Once we include the best of the two-loop terms then imaginary
parts should also come in. The latest versions of TOPAZ0 and ZFITTER therefore
include imaginary parts of the Z-resonance form factors.

The explicit formulae for the Zff vertex are always written starting from a
Born-like form of a pre-factor × fermionic current, where the Born parameters
are promoted to effective, scale-dependent parameters,

ρf
Z
γµ

[(

I(3)
f + i aL

)

γ+ − 2 Qfκf
Z
s2 + i aQ

]

= γµ

(

Gf
V

+ Gf
A

γ5

)

, (6)

where γ+ = 1 + γ5 and aQ,L are the SM imaginary parts. Note that imaginary
parts are always factorized in ZFITTER and added linearly in TOPAZ0.

By definition, the total and partial widths of the Z boson include all cor-
rections, also QED and QCD corrections. The partial decay width is therefore
described by the following expression:

Γf ≡ Γ
(

Z → ff
)

= 4 cf Γ0

(

|Gf
V
|2 Rf

V + |Gf
A
|2 Rf

A

)

+ ∆
EW/QCD

, (7)

where cf = 1 or 3 for leptons or quarks (f = l, q), and the radiator factors

Rf
V and Rf

A describe the final state QED and QCD corrections and take into
account the fermion mass mf .

There is a large body of contributions to the radiator factors in particular for
the decay Z → qq; both TOPAZ0 and ZFITTER implement the results that have
been either derived or, in few cases, confirmed in some more general setting by
the Karlsruhe group, see for instance [15]. The splitting between radiators and
effective couplings follows well defined recipes that can be found and referred to
in [4, 16]. In particular our choice has been that top-mass dependent QCD cor-
rections are to be considered as QCD corrections and included in the radiators
and not in the effective quark couplings.

The last term,

∆
EW/QCD

= Γ(2)
EW/QCD

−
αS

π
Γ(1)

EW
, (8)

10

Parametrise the on-shell Z f ̅f  vertex as

M. González-Alonso /10EFT analyses of  NP

Pseudo-observables in Higgs decays (linear EFT)

Exampl
e:

What’s the room for NP in 
Higgs decays taking into 

account LEP results?

Z

[MGA, Greljo, Isidori & Marzocca, arXiv:1504.xxxx]

The PO are defined as

accounts for the non-factorizable corrections. The standard partial width, Γ0,
is

Γ0 =
GF M3

Z

24
√

2 π
= 82.945(7) MeV. (9)

The hadronic and leptonic pole cross-sections are defined by

σ0
h = 12π

ΓeΓh

M2
Z
Γ2

Z

σ0
ℓ = 12π

ΓeΓl

M2
Z
Γ2

Z

, (10)

where ΓZ is the total decay width of the Z boson, i.e, the sum of all partial
decay widths. Note that the mass and total width of the Z boson are defined
based on a propagator term χ with an s-dependent width:

χ−1(s) = s − M2
Z

+ isΓZ /MZ . (11)

The effective electroweak mixing angles (effective sinuses) are always defined by

4 |Qf | sin2 θf
eff = 1 −

Re Gf
V

Re Gf
A

= 1 −
gf

V

gf
A

, (12)

where we define
gf

V
= Re Gf

V
, gf

A
= Re Gf

A
. (13)

The forward-backward asymmetry A
FB

is defined via

A
FB

=
σ

F
− σ

B

σ
F

+ σ
B

, σ
T

= σ
F

+ σ
B

, (14)

where σ
F

and σ
B

are the cross sections for forward and backward scattering,
respectively. Before analysing the forward-backward asymmetries we have to
describe the inclusion of imaginary parts. A

FB
is calculated as

A
FB

=
3

4

σ
VA

σ
T

, (15)

where

σ
VA

=
GF M2

Z√
2

√
ρeρf QeQfRe

[

α∗(M2
Z
)Ge

V
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A
χ(s)

]
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8 π
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[

Ge
V

(

Ge
A

)∗
]

Re
[

Gf
V

(

Gf
A

)∗
]

s |χ(s)|2. (16)

In case of quark-pair production, an additional radiator factor multiplies σ
VA

,
see also Eq.(53).

This result is valid in the realization where ρf is a real quantity, i.e., the
imaginary parts are not re-summed in ρf . In this case

Gf
V

= Re
(

Gf
V

)

+ i Im
(

Gf
V

)

= gf
V

+ i Im
(

Gf
V

)

, Gf
A

= I(3)
f + i Im

(

Gf
A

)

. (17)

11

1)

2)
mZ, ΓZ
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The most important radiative corrections are 
given by soft QED radiation effects since they 
distort the spectrum.

h
m02

m2 < m02

γ

Effect described by simple and universal
radiator functions ω. Also described by 
showering algorithms (e.g. Pythia, Photos).

2
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Fig. 1 Dilepton invariant mass spectra in the SM for h ! 2e2µ decay.

blue bands for µ+µ� and e

+
e

� invariant mass spectra, re-
spectively. The important conclusion is that our procedure
gives an excellent approximation to full NLO EW correc-
tions at the level of one percent accuracy in this observable.
As expected, the corrections are larger for smaller recombi-
nation parameter m⇤. Moreover, the distributions in µ+µ�

and e

+
e

� invariant masses are the same within MC uncer-
tainty due to the fact that large fermion-mass logarithms can-
cel in sufficiently inclusive observables.

4 Conclusions
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With ren. and fact. scale HT/2
the NLO shape effects greatly reduced:
almost flat NLO correction.

Better convergence of the
perturbative series.

gg → Zh treated as background
(different physical correlation function).

Effort to disentangle experimentally,
see template cross sections.
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Figure 8: NLO correction factors and scale uncertainties for pp ! ZH in the SM in
function of pT,Z (left) and mHZ employing a central scale µ0 = HT/2.

employed setup is as detailed already in Section 3.2, while here we do not apply any phase-
space cuts. Although the natural scale choice for VH clearly is µ0 = Q =

p
(ph + pZ)2,

here we employ a scale µ0 = HT/2. With this scale choice the resulting di↵erential
distributions (to be utilized in the Higgs PO fit) are almost free of shape e↵ects due to
higher-order QCD corrections. A study of a similar stabilization including deformations
in the Higgs PO framework will be performed in the near future.

In the case of Zh besides Drell-Yan-like production there are loop-induced contribu-
tions in gg ! Zh mediated by heavy quark loops, which in particular become important
in the boosted regime with pT,H > 200 GeV [57,58].

Besides QCD corrections also EW corrections give relevant contributions and shape
e↵ects to VH processes due to Sudakov logarithms at large energies. They are known at
NLO EW [59,60] and decrease the LO predictions by about 10% for pT,Z = 300 GeV and
by about 15% for pT,W = 300 GeV. We stress that, as in the VBF case, the dominant
NLO EW e↵ects are factorizable corrections which can be reabsorbed into a redefinition
of the PO.

4.3 Prospects for the Higgs PO in Zh at the HL-LHC

In order to estimate the reach of the HL-LHC, at 13 TeV and 3000 fb�1 of integrated
luminosity, for measuring the Higgs PO in Zh production, we consider the all-leptonic
channel Z ! 2`, h ! 2`2⌫. The 8 TeV ATLAS search in this channel [51] estimated 0.43
signal events with 20.3 fb�1 (Table X of [51]). By rescaling the production cross section
and the luminosity up to the HL-LHC we estimate approximately ⇠ 130 signal events at
the SM rate. Assuming a sample of this size we perform a fit of the pT distribution of the Z
boson. In order to control the validity of the momentum expansion we apply an upper cut
of pmax

T = 280 GeV, which corresponds approximately to q2 ⇡ 600 GeV (see Fig. 7). We
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SM

Dominant NNLO QCD correction in diff. distribution in the SM is known.
[Ferrera, Grazzini, Tramontano 1107.1164, 1312.1669, 1407.4747]

~ 20% correction

Leading NLO EW corrections up to ~ -15%:  large Sudakov logs → factorize.
[Denner and Pozzorini hep-ph/0010201, hep-ph/0104127, Denner et al. 1112.5142]
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Figure 4: One- (left) and two-dimensional (right) NLO correction factors and scale un-
certainties for EW production of pp ! h + 2 jets in the SM in function of pT,j

1

and pT,j
2

employing a central scale µ0 = HT/2.

bands correspond to 7-point renormalization (only relevant at NLO) and factorization
scale variations µR,F = ⇠R,Fµ0 with (⇠R, ⇠F) = (2, 2), (2, 1), (1, 2), (1, 1), (1, 0.5), (0.5, 1),
(0.5, 0.5). Thanks to the dynamical scale choice NLO corrections to the one-dimensional
distributions are almost flat and amount to about �15%, while the dependence in the
two dimensional distribution remains moderate with largest corrections for pT,j

1

⇡ pT,j
2

.
In the following section we will detail a fit of Higgs PO based on LO predictions of VBF

using the scale choice and setup developed in this chapter. Here we already note, that this
fit is hardly a↵ected by the overall normalization of the predictions. Thus, with respect
to possible small deviations from the SM due to e↵ective form factor contributions we
expect a very limited sensitivity to QCD e↵ects assuming a similar stabilization of higher
order corrections as observed for the SM employing the scale choice µ0 = HT/2. In order
to verify this assumption and to improve on the Higgs PO fit, we are currently extending
the simulations within the Higgs PO framework to the NLO QCD level. To this end,
the framework has been implemented in the OpenLoops one-loop amplitude generator
in a process independent way. Here, the O(↵S) rational terms of R2-type required in
the numerical calculation of the one-loop amplitudes in OpenLoops have been obtained
generalising the corresponding SM expressions [40]. The implementation of the dipole
subtraction and parton-shower matching in the Sherpa Monte Carlo framework is based
on the model independent UFO interface of Sherpa [41] and is currently being validated.
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using the scale choice and setup developed in this chapter. Here we already note, that this
fit is hardly a↵ected by the overall normalization of the predictions. Thus, with respect
to possible small deviations from the SM due to e↵ective form factor contributions we
expect a very limited sensitivity to QCD e↵ects assuming a similar stabilization of higher
order corrections as observed for the SM employing the scale choice µ0 = HT/2. In order
to verify this assumption and to improve on the Higgs PO fit, we are currently extending
the simulations within the Higgs PO framework to the NLO QCD level. To this end,
the framework has been implemented in the OpenLoops one-loop amplitude generator
in a process independent way. Here, the O(↵S) rational terms of R2-type required in
the numerical calculation of the one-loop amplitudes in OpenLoops have been obtained
generalising the corresponding SM expressions [40]. The implementation of the dipole
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Dominant NNLO QCD correction in diff. distribution in the SM has been computed 
very recently. [Cacciari et al. 1506.02660]

Leading NLO EW corrections up to ~15%:  large Sudakov logs → factorize.

anti-kT jets
R=0.4 
Δη j1 j2 > 3

Important cut for
background reduction &
stabilize NLO
prediction in VBF

Leading and sub-leading jet pT: 2D jet pT distribution:

~ 2
5-3

0%
 Q

CD co
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[Denner and Pozzorini hep-ph/0010201, hep-ph/0104127, Ciccolini et al. 0710.4749, 0707.0381]
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Flavor-independent PO probed in h→4ℓ decay. Focus on quark contact terms.

For simplicity let’s assume Minimal Flavor Violation. Consider 7 PO:
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We fix an upper cut on the q2 of 600 GeV for 
controlling the momentum expansion validity.

VBF: fit of the 2D pT distribution.

Zh, Wh: fit of the 1D pTV distribution.

LHC will be able to measure all the 
contact terms with percent accuracy!
Same conclusion also if no information on the 
total rate is retained.
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Figure 5: Prospects for measuring Higgs PO in electroweak Higgs production at the HL-
LHC at 13 TeV with 3000 fb�1 of integrated luminosity. For VBF and Zh we considered the
h ! 2`2⌫ channel (with Z ! 2` in Zh) while for Wh we considered only the clean h ! 4`,
W ! `⌫ channel. The solid (dashed) intervals represent the 1� (2�) constraints in each PO,
where all the others are profiled. The red bounds are from VBF, the blue ones from Zh and the
green ones from Wh production. More details can be found in the main text.

3.3 Prospects for the Higgs PO in VBF at the HL-LHC

The extraction of the PO from the double di↵erential distribution F̃ (pTj
1

, pTj
2

) has to be
done with care. Here we make an attempt to perform such analysis. In the following we
estimate the sensitivity of the HL-LHC, operated at 13 TeV with 3000 fb�1 of data, on
measuring the PO assuming maximal flavor symmetry in a seven dimensional fit to ZZ ,
WW , ✏ZuL , ✏ZuR , ✏ZdL , ✏ZdR and ✏WuL . The ATLAS search for h ! WW ⇤ reported in
Ref. [42] considers the VBF-enriched category in which the detection of two jets consistent
with VBF kinematics is required. The expected yields in this category are reported in
Table VII of Ref. [42]. After the final selection cuts at 8 TeV with 20.3 fb�1 of integrated
luminosity, the expected number of Higgs VBF events in the SM is 4.7 (compared to 5.5
background events) in the eµ sample. Rescaling the number of expected events with the
expected HL-LHC luminosity (3000 fb�1) and cross section, we expect about 2000 SM
Higgs VBF events to be collected by each experiment. In the following, we make a brave
approximation and neglect any background events in the fit and assume that the HL-LHC
will observe a total of 2000 events compatible with the SM expectations.
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HL-LHC with 3 ab-1

With 3000 fb-1:  ~ 2000 events in VBF (h→2l2ν)
                       ~ 130 events in all leptonic Zh
                       ~ 67 events in all leptonic Wh

As anticipated, a key point to be addressed for a consistent extraction of the PO is
the validity of the momentum expansion. In order to control such expansion, we set an
upper cut on the pT of the leading VBF-tagged jet. The momentum expansion of the
form factors in Eq. (6) only makes sense if the higher order terms in q21,2 are suppressed.
This requirement leads to the consistency condition,

✏Xf
|q2max| . m2

Z gfX , (20)

where q2max is the largest momentum transfer in the process. A priori we do not know the
size of ✏Xf

or, equivalently, the e↵ective scale of new physics. However, a posteriori we
can verify by means of Eq. (20) if we are allowed to truncate the momentum expansion to
the first non-trivial terms. In practice, setting a cut-o↵ on pT we implicitly define a value
of

p�q2max. Extracting the ✏Xf
for pT,j < (pT,j)max ⇡ p�q2max we can check if Eq. (20)

is satisfied. Ideally, the experimental collaborations should perform the extraction of the
✏Xf

for di↵erent values of (pT,j)max optimizing the range according to the results obtained.
In the following exercise we set (pT,j)max = 600 GeV which, a posteriori, will turn out to
be a good choice in absence of any sizeable deviations from the SM.

In our analysis we choose the binning in the double di↵erential distributions in the
two VBF tagged jet pT’s as {30� 100� 200� 300� 400� 600} GeV. We use the UFO
implementation of the Higgs PO in the Sherpa Monte Carlo generator [34,41] to simulate
VBF Higgs events over the relevant PO parameter space in proton-proton collisions at
13 TeV c.m. energy. Here we employ the VBF selection cuts as listed in Eq. (17) with the
additional requirement �⌘j

1

j
2

> 3. We verified that the results of the fit are independent
on the precise value of this last cut. Renormalization and factorization scales are set to
µR/F = HT/2, as discussed in Section 3.2.

Analyzing the simulation output, we find expressions for the number of expected events
in each bin as a quadratic polynomial in the PO:

N ev
a = TXa , with  ⌘ (ZZ ,WW , ✏ZuL , ✏ZuR , ✏ZdL , ✏ZdR , ✏WuL)

T , (21)

where a is a label for each bin. Assuming that the HL-LHC “would-be-measured” dis-
tribution is SM-like and describing the number of events in each bin with a Poisson
distribution, we construct a global likelihood L and evaluate the best-fit point from the
maximum of the likelihood. We then define the test statistic, ��2 = �2 log(L/Lmax), as
a function of the seven PO. For more details on the statistical analysis see App. A.

In Fig. 5, we show in red the 1� (��2  1) and 2� (��2  4) bounds for each PO,
while profiling over all the others. The expected uncertainty on the ZZ,WW is rather large
(with a loosely bounded direction: �ZZ ⇡ �3�WW ), however in a global fit to all Higgs
data, these PO are expected to be much more precisely constrained from h ! 4`, 2`2⌫
decays. The most important conclusion of this analysis is that at the HL-LHC all five
production PO can be constrained at the percent level. In the following we test the
robustness of this conclusion.

The likelihood obtained from the PO fit is highly non-Gaussian, which is mainly due
to the fact that Eq. (21) is quadratic in the PO, and thus the ��2 is approximately a
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The first check is given by the consistency condition
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To be more specific, we consider a Z 0 which contributes to the form factor F ff 0

L of
hJµ

f (q1)J
⌫
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#
, (29)

Such a contribution could arise, for example, from the following interaction terms,

L � �2gHmZZ
µZ 0

µh+
X

f=fL,fR

gfZ0 f̄�
µfZ 0

µ , (30)

where all the fields are canonically normalized and in the mass basis. Using Feyn-
Rules [64] (package version 1.6.16) we obtain an UFO [11] representation of this Z 0-
model and perform exactly the same analysis previously applied to the PO for VBF
and VH production. This allows us to derive bounds on the combination of couplings
gf ⌘ gHg

f
Z0 for a set of benchmark Z 0 masses, MZ0 . In this simple model the Z 0 only

decays to a pair of fermions as well in Z + h. The corresponding partial decay widths,
assuming the Z 0 is much heavier than the daughter particles, are

�(Z 0 ! f̄f) =
Nc MZ0

24⇡
|gfZ0 |2 , �(Z 0 ! Zh) =

MZ0

48⇡
g2H , (31)

where Nc is the number of colors. In order to simplify the analysis, we assume that the Z 0

is a narrow resonance (�Z0 ⌧ MZ0). This allows to interpret bounds from the VBF and
VH analyses in terms of the gf parameters. Using the above relations, we have checked
that this condition is satisfied for the benchmark scenarios we consider in the following.
Expanding the form factor from Eq. (29) for q21 ⌧ M2

Z0 and �Z0 ⌧ MZ0 and keeping only
the leading deviation from the SM, we find:

✏Zf = gHg
f
Z0
vmZ

M2
Z0

= gf
vmZ

M2
Z0

. (32)

5.1 E↵ect of the Z0 in VBF

We consider the case where the Z 0 couples to both the down and up right-handed quarks,
with two independent couplings, gdRZ0 and guR

Z0 . In addition, we fix the Z 0 mass to two
benchmarks values: (a) 700 GeV and (b) 2000 GeV. The main results of the analysis are
shown in Fig. 10.

On the one hand, we perform a fit to the Higgs PO ✏ZuR and ✏ZdR , while fixing all
other PO to zero, and translate this bound on the relevant parameter space of the Z 0

model, namely the {gdR , guR} plane. We report the results of the fit obtained with full
quadratic dependence on the PO, as well as the results in which Nev is linearized in �X

and ✏X . In both cases, 95% CL bounds are obtained by requiring �2 logL/Lmax  5.99.
On the other hand, using exactly the same binning and statistical treatment, we directly
fit the Z 0 model parameters.
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Study in detail by considering an explicit NP contribution: Z’ coupled to light quarks:

h
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We can expand this form factor for q2 << MZ’ and match to the PO.
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Figure 10: We show the expected 95 % CL bound in the plane (gdR , guR) ⌘ gH(gdRZ0 , g
uR
Z0 )

for MZ0 = 700 and 2000 GeV on the left and right plots, respectively. All the bounds are
obtained analysing 2000 VBF Higgs production events as discussed in Sec. 3.3. The solid red
line represents the bound obtained in the Z 0 model, while the solid blue (dotted blue) are the
bounds obtained in the Higgs PO fit with quadratic (linear) dependence on the PO.

Comparing the two methods we conclude: (i) for both masses the quadratic PO fit pro-
vides a reasonable approximation of the model fit, while the linear fit largely overestimates
the errors; (ii) the PO fit performs better for MZ0 = 2000 GeV than for MZ0 = 700 GeV,
as expected from the momentum expansion validity arguments (we recall that we set the
cut pT,j < 600 GeV); however, also for MZ0 = 700 GeV the quadratic fit does provide
a fair approximation to the model fit. In particular, in this case we see that the bound
from the PO fit is stronger than in the model, which can be understood by the fact that
in VBF the Z 0 is exchanged in the t-channel, and therefore its main e↵ect is to reduce
the amplitude for high values of q2.

5.2 E↵ect of the Z0 in Zh

In order to assess the validity of the momentum expansion in associated production, it
is convenient to look first at the underlying partonic cross section. In Fig. 11 we show
the partonic cross section dd̄ ! Zh, as a function of the Zh invariant mass, for the two
benchmark points of Z 0 model introduced above.

Both benchmark points have been chosen such that they generate the same contact
term when the Z 0 is integrated out, ✏ZdR = 1.68 ⇥ 10�2, which is within the 2� bound
of our PO fit. The width of the Z 0 has been fixed to 100 GeV and 200 GeV for the
light and heavy scenario, respectively. Using Eq. (31) and assuming no other decay mode
is present, this corresponds to gH ' 0.097 (3.0) in the light (heavy) scenario. We have
checked that our conclusions do no change by varying the total width, as long as the
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Validity of the momentum expansion (Zh)
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Figure 11: Partonic cross section dd̄ ! Zh as a function of the invariant mass mZh in the SM
(dashed gray line) and with a Z 0 coupled to right-handed down quarks only. With red lines we
show the cross section computed in the full model while the blue ones represent the cross section
using the PO decomposition –with matching conditions in Eq. (32)– using the full dependence
(solid line) or only the linear one (dashed line). In the left plot we consider the benchmark light
Z 0 scenario: MZ0 = 700 GeV, �Z0 = 100 GeV and gdR = 0.367. In the right plot we consider
the heavy Z 0 scenario: MZ0 = 2000 GeV, �Z0 = 200 GeV and gdR = 3. Both benchmarks give
rise to the same contact term: ✏ZdR ' 1.68⇥ 10�2.

condition �Z0 ⌧ MZ0 is satisfied.
As expected, in the light scenario the cross section in the full model strongly deviates

from the PO one well before the 600 GeV cuto↵ imposed in the fit, implying that our PO
fit is not reliable in this case. On the other hand, the scenario with a heavy and strongly
coupled Z 0 shows a very good agreement with the full PO analysis up to ⇠ 1 TeV, i.e.
well above the UV cuto↵ of our analysis, implying that the analysis can be safely applied
to such scenarios, and that it could be even improved by setting a slighly higher cuto↵. In
both cases, from Fig. 11 is clear that the linearized dependence on the PO is not su�cient
to describe the cross section, even for energies much smaller than the Z 0 mass.

From this analysis we can anticipate the results of a comparison of various fits of Zh
data, i.e. full model fit vs. PO fits using quadratic and linear dependence, as already done
in the VBF case. In Fig. 12 we show the results of such fits. We stress that in all cases
the analysis was exactly the same: we have analyzed the pZT distribution up to 280 GeV,
employing always the same binning (as discussed in Sec. 4.3). The solid red line represents
the 95 % CL bound in the full model while the solid (dashed) blue line shows the bound
obtained from the PO fit with quadratic (linear) dependence.

The distributions in Fig. 11 allow a straightforward interpretation of these results. In
the heavy-Z 0 case, the full quadratic expansion in the Higgs PO describes very well the
mZh distribution before the cuto↵ of 600 GeV, while keeping only the linear dependence
underestimates the new physics contribution. It is thus expected that in this case the
bound will be much worse. In the light-Z 0 case, both expansions with Higgs PO under-
estimate the cross section, thus providing a worse bound than in the full model. Still,
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Figure 12: Expected 95 % CL bound in the plane (gdR , guR) ⌘ gH(gdRZ0 , g
uR
Z0 ) for MZ0 = 700

and 2000 GeV on the left and right plots, respectively. All the bounds are obtained analysing
130 Zh Higgs production events as discussed in Sec. 4.3. The solid red line represents the bound
obtained in the full model, while the solid blue (dashed blue) are the bounds obtained via the
matching in eq. (32) from the Higgs PO fit with quadratic (linear) dependence on the PO.

the quadratic dependence does a significantly better job in approximating the complete
model than the linear one, as in the VBF case.

From this illustrative toy-model example we can draw the following general conclusion
with respect to the validity of the PO expansion: for underlying models that respect the
momentum expansion, hence for models where the PO extracted from data satisfy, a
posteriori, the consistency condition (20), the quadratic fit provides more reliable and
thus more useful constraint on the PO. In such models the di↵erence between quadratic
and linear fit represents a large overestimate of the errors.

However, the situation is more involved for models with low-scale new physics. The
latter should manifest by anomalously large values of the PO, or sizable di↵erences in
the fits performed with di↵erent upper pT cuts. In such cases the quadratic fit is likely
to provide a useful constraint, especially for the class of models with a strong correlation
between linear and quadratic terms in the momentum expansion (as the simple Z 0 model
discussed above). Still, for low-scale new-physics we cannot exclude more complicated
scenarios where new model parameters appearing at higher order in the momentum ex-
pansion wash-out an apparent small error on the PO from the quadratic fit. In such
cases only the the results of the linear fit (with a properly low pT cut) would provide an
unbiased constraint on the model.

In view of these arguments, we encourage the experimental collaborations to report
the results of both linear and quadratic fits, as well as to perform such fits using di↵erent
pT cuts.

28


