Measurements of four-jet differential cross sections in $\sqrt{s} = 8$ TeV proton-proton collisions using the ATLAS detector

Sabrina Sacerdoti on behalf of the Atlas Collaboration

Universidad de Buenos Aires

La Thuile, 6-12th March 2016

Outline

1. Introduction

- 2. Event Reconstruction and Selection
- 3. Cross-section definition
- 4. Predictions
- 5. Results
- 6. Conclusion

Test of predictions at LO and NLO: the predictions are expected to display various levels of agreement with data in different kinematic regimes.

Data-MC comparisons were made in order to study how theoretical predictions describe:

- ► inclusive variables,
- angular variables,
- the range of energy scales within an event,
- regimes sensitive to NLO effects,
- low-x (large Δy) distributions.

Study of QCD background: several new physics searches have many jets in the final state;

it is thus crucial to understand the QCD contribution to this kind of events.

Event Reconstruction and Selection

Jets:

- reconstructed using the anti-kt algorithm, with radius parameter R=0.4
- calibrated using data-driven methods

Phase-space At least 4 jets within the rapidity region |y| < 2.8, with $p_T^{(1)} > 100 \text{ GeV} \& p_T^{(4)} > 64 \text{ GeV}$, separated by $\Delta R_{ii} > 0.65$.

Trigger Exclusive combination of two single-jet and two 4-jet triggers. The p_T and ΔR_{ij} cuts are implemented to have > 99% trigger efficiency.

Cross-section definitions

Probed multijet topologies by measuring the distributions of event variables:

Momentum

- $p_{T}^{(i)}$: p_{T} of the *i*-th jet, i = 1, 2, 3, 4
- $H_{\rm T}$: scalar sum of the $p_{\rm T}$ of the 4 jets
- $\Sigma p_{T}^{central}$: scalar sum of the p_{T} of the 2 central jets
- Mass

 m_{4j}: invariant mass of the 4 jets

 m^{min}_{2i}/m_{4j}: ratio of the minimum invariant mass of 2 jets and m_{4j}
- Angular $\Delta y_{2j}^{\min}, \Delta \phi_{3j}^{\min}$: minimum angular separation between 2 jets $\Delta y_{3j}^{\min}, \Delta \phi_{3j}^{\min}$: minimum angular separation between 3 jets Δy_{2j}^{\max} : maximum rapidity separation between 2 jets
- Only the 4 leading jets in p_T are used.
- Inclusive cuts were applied to the transverse momentum, rapidity and mass in order to probe different kinematic regimes.
- Distributions were unfolded using the Bayesian Iterative method.
- ▶ 4 examples shown today; all results can be found in JHEP 12(2015)105.

Theoretical Predictions

Monte Carlo simulations are used to:

- estimate experimental systematic uncertainties,
- deconvolute detector effects,
- compare with data.

Name	Hard scattering + PS/UE	LO/NLO	PDF
Pythia 8	Pythia8+Pythia8	LO (2 \rightarrow 2)	CT10
Herwig++	Herwig+++Herwig++	LO (2 $ ightarrow$ 2)	CTEQ6L1
MadGraph	Madgraph+Pythia6	LO (2 $ ightarrow$ 4)	CTEQ6L1
HEJ	HEJ [†]		CT10
BlackHat	BlackHat/Sherpa	NLO (2 \rightarrow 4)	CT10
NJet	NJet/Sherpa	NLO (2 \rightarrow 4)	CT10

(†) The HEJ sample is based on an approximation to all orders in α_s .

- Pythia 8 is used for unfolding and to estimate systematic uncertainties.
- Herwig++ and Madgraph were used for cross checks and uncertainties.
- All predictions were compared to data.
- ▶ The LO and HEJ simulations were rescaled to facilitate comparison with the data.

Results: Momentum Variables

First leading jet $p_{\rm T}$ ($p_{\rm T}^{(1)}$).

Data compared to LO (left) and NLO and HEJ (right) predictions.

- All LO generators show a slope with respect to data, Madgraph being the only one with a positive slope in p_T⁽¹⁾.
- NJet and HEJ do well in the leading jet spectrum, but might benefit from matching to PS in the p_T⁽⁴⁾ case.
- > Pythia is better in $p_{T}^{(4)}$. Madgraph does reasonably well in all.

Results: Momentum Variables

Fourth leading jet p_T ($p_T^{(4)}$).

Data compared to LO (left) and NLO and HEJ (right) predictions.

- All LO generators show a slope with respect to data, Madgraph being the only one with a positive slope in p_T⁽¹⁾.
- NJet and HEJ do well in the leading jet spectrum, but might benefit from matching to PS in the p_T⁽⁴⁾ case.
- > Pythia is better in $p_T^{(4)}$. Madgraph does reasonably well in all.

Results: Mass Variables

Invariant Mass of the 4 leading jets (m_{4j}) . Data compared to LO (left) and NLO and HEJ (right) predictions.

- Variable sensitive to the separation between jets.
- Pythia and Madgraph describe the data well, as does Herwig above 1 TeV.
- HEJ and NJet present a bump structure in the 1-2 TeV region; the difference is covered by the NLO uncertainties.

Results: Angular Variables - LO

Results: Angular Variables - NLO and HEJ

- HEJ provides a good description of all angular variables for p_T⁽¹⁾ > 400 GeV, but shows significant discrepancies in all variables for lower p_T⁽¹⁾ values.
- NJet describes the data well within uncertainties.

Event with small value of $\Delta \phi_{ijk}^{min}$

Results: $\Sigma p_{T}^{\text{central}}$ for $\Delta y_{2j}^{\text{max}} > 2 - \text{LO}$

- All $2 \rightarrow 2$ predictions have issues describing this transition.
- The discrepancies worsen for larger Δy_{2i}^{max} and $p_T^{(1)}$ cuts.
- Madgraph provides the best description, especially at low $p_{T}^{(1)}$.

Results: $\Sigma p_T^{\text{central}}$ for $\Delta y_{2j}^{\text{max}} > 2$ - NLO and HEJ

- Testing the HEJ framework, which is set to describe topologies with 2 jets significantly separated, and 2 additional high-p_T jets.
- HEJ describes better the high Σp^{central} region, the lower part shows more shape differences.
- NJet overestimates the values for low Σp_T^{central} but otherwise describes the data well.

Conclusions

 Four-jet differential cross sections were studied for various kinematic and topological variables

Performance of the predictions:

- The NLO predictions BlackHat/Sherpa and NJet/Sherpa are mostly compatible with data within theoretical uncertainties, which are found to be large (O(30%) at low momenta) and asymmetric.
- HEJ, BlackHat/Sherpa and NJet/Sherpa provide good descriptions of the leading jets but disagree with data for p_T⁽⁴⁾
- Madgraph provides a good description of all variables, although it shows a slope in the jet p_T's.
- Mass & angular variables: BlackHat/Sherpa, NJet/Sherpa, HEJ and Madgraph+Pythia do a remarkable job overall

These measurements expose the shortcomings of $2 \rightarrow 2$ plus parton shower predictions in a variety of scenarios and highlight the importance of the more sophisticated calculations.

Thank you!

BACK UP SLIDES

Cross-section definitions

Momentum

variable	definition	cuts
$p_{\mathrm{T}}^{(i)}$	transverse momentum	64/100 GeV - 2 TeV
H _T	$\sum_{i=1}^{4} \boldsymbol{\rho}_{T}^{(i)}$	290 GeV - 7 TeV
$\Sigma p_{\rm T}^{\rm central}$	$ p_T^c + p_T^d $	$\Delta y_{2j}^{max} > 1, 2, 3, 4, p_{T}^{(1)} > 100, 250, 400, 550$

Mass

m _{4j}	$\left(\left(\sum_{i=1}^{4} E_i\right)^2 - \left(\sum_{i=1}^{4} \mathbf{p}_i\right)^2\right)^{1/2}$	100 GeV - 7 TeV
$m_{ m 2j}^{ m min}/m_{ m 4j}$	$\min_{\substack{i,j\in[1,4]\\i\neq j}} \left((E_i + E_j)^2 - (\mathbf{p}_i + \mathbf{p}_j)^2 \right)^{1/2} / m_{4j}$	m _{4j} > 0.5, 1, 1.5, 2 TeV

Angular

$\Delta \phi^{ m min}_{ m 2j}$	$\min_{\substack{i,j\in[1,4]\\i\neq j}} \left(\phi_i - \phi_j \right)$	$p_{\rm T}^{(1)}$ > 100, 400, 700, 1000 GeV
Δy_{2j}^{\min}	$\min_{\substack{i,j\in[1,4]\\i\neq j}} (y_i - y_j)$	<i>p</i> _T ⁽¹⁾ > 100, 400, 700, 1000 GeV
$\Delta \phi^{min}_{3j}$	$\min_{\substack{i,j,k\in[1,4]\\i\neq j\neq k}} \left(\phi_i - \phi_j + \phi_j - \phi_k \right)$	$p_{\rm T}^{(1)}$ > 100, 400, 700, 1000 GeV
Δy_{3j}^{\min}	$\min_{\substack{i,j,k\in[1,4]\\i\neq j\neq k}} \left(y_i - y_j + y_j - y_k \right)$	$p_{\rm T}^{(1)}$ > 100, 400, 700, 1000 GeV
Δy_{2j}^{\max}	$\Delta y_{ij}^{\max} = \max_{i,j \in [1,4]} \left(y_i - y_j \right)$	$p_{\rm T}^{(1)}$ > 100, 250, 400, 550

Uncertainties

Experimental Uncertainties

- The Jet Energy Scale, Jet Energy Resolution, Jet Angular Resolution and Luminosity uncertainties were estimated and taken into account.
- The JES is the dominating uncertainty. Typical size is 4-15%...

Unfolding uncertainties Main component comes from the different MC descriptions of the particle- and reco-level association efficiency. Typical size is 2-10% Theoretical uncertainties The scale and PDF uncertainties are obtained for NJet and HEJ. (Only NJet's are shown.)

Bayesian Iterative method is used, using 2 iterations. This method corrects for:

- migrations between bins
- background events
- detector inefficiencies

Unfolding matrix built with Pythia, with event by event reco-level and particle-level matching. No jet-by-jet spatial matching is applied.

Binning was determined to get a bin by bin purity between 70 and 90%, and a statistical uncertainty in data below 10%

Results: $p_{\rm T}^{(2)}$ and $p_{\rm T}^{(3)}$

Results: $p_{\rm T}^{(4)}$ and m_{4j}

- Mass variables are sensitive to the separation between the jets
- m_{4j} > 1 TeV is well described by the LO predictions, particularly Madgraph, but normalisation is off by 20-40%.
- Pythia and Herwig overestimate the events for low m^{min}_{2i}/m_{4j}, worse for higher m_{4j}.
- m^{min}_{2j} / m_{4j} is well described by Madgraph for all m_{4j} cuts, providing the best description for mass variables.

Results: Mass Variables - NLO and HEJ

- *m*_{4j} is well described by HEJ and NJet, though presenting a bump structure.
- m^{min}_{2j}/m_{4j} is well described by HEJ at low m_{4j}, differences are covered by the large theoretical uncertainties.
- NJet overestimates the first bin values, but otherwise agrees with data within uncertainties

Results: $\Delta \phi_{2j}^{\min}$ - LO predictions

Results: $\Delta \phi_{2j}^{\min}$ - NLO and HEJ

Results: Δy_{2i}^{\min} - LO predictions

Results: Δy_{2i}^{\min} - NLO and HEJ

Results: Δy_{3i}^{\min} - LO predictions

Results: Δy_{3i}^{\min} - NLO and HEJ

Results: Δy_{2i}^{max}

Results: $\Delta y_{2i}^{\text{max}}$ - NLO and HEJ

Results: $\Sigma p_T^{\text{central}}$ for $\Delta y_{2j}^{\text{max}} > 1$ - LO predictions

Results: $\Sigma p_T^{\text{central}}$ for $\Delta y_{2j}^{\text{max}} > 1$ - NLO and HEJ

Results: $\Sigma p_T^{\text{central}}$ for $\Delta y_{2j}^{\text{max}} > 3$ - LO predictions

Results: $\Sigma p_T^{\text{central}}$ for $\Delta y_{2j}^{\text{max}} > 3$ - NLO and HEJ

Results: $\Sigma p_T^{\text{central}}$ for $\Delta y_{2j}^{\text{max}} > 4$ - LO predictions

Results: $\Sigma p_T^{\text{central}}$ for $\Delta y_{2j}^{\text{max}} > 4$ - NLO and HEJ

