

Discovery of v_r Appearance and Recent Results from OPERA

Tsutomu Fukuda Toho Univ. Japan for the OPERA Collaboration

La Thuile 2016, 7th Mar. 2016, Aoste, Italy

T. Fukuda, La Thuile 2016

OPERA collaboration

11 countries, 26 institutions, 140 physicists

Bologna LNF **LNGS** Napoli Padova Roma Salerno

INR-RAS Moscow LPI-RAS Moscow SINP MSU Moscow JINR Dubna

Technion Haifa LHEP Bern IHE Brussels

METU Ankara Jinjiu

Motivation of OPERA

- Neutrino oscillations have been studied in disappearance mode.
 - Atmospheric sector : Super-Kamiokande, MACRO, MINOS, K2K, T2K,...

\rightarrow Long way to appearance

- Super-Kamiokande : v₁appearance in atmospheric neutrino data (statistical separation in background-dominated sample)
- T2K, NOvA : v_e appearance in v_μ beam
- Main goal of OPERA Verify the $v_{\mu} \rightarrow v_{\tau}$ oscillation at the atmospheric scale in appearance mode (S/N ~ 10).

Oscillation Project with Emulsion tRacking Apparatus

$$\nu \stackrel{\text{oscillation}}{\mu} \xrightarrow{} \nu_{\tau} + N \rightarrow \tau^{-} + X$$

Search for τ decay topology on an event by event basis.

- Nuclear Emulsion is a special photographic film
 - : AgBr micro crystal semiconductor
- Signal is amplified by chemical process (development).

CNGS neutrino beam

 $\overline{\nu}_{\mu} / \nu_{\mu}$

 v_{τ} prompt

Beam is designed to observe T leptons. Interaction rates @1.8x10²⁰ p.o.t. $\rightarrow \sim 20 \text{kv}_{\mu}\text{CC+NC}$ and 66.4v_tCC (not efficiency corrected)

6

2.1 %*

Negligible*

* Interaction rate at LNGS

The OPERA Detector

T. Fukuda, La Thuile 2016

The OPERA detector

Find the brick containing the neutrino interaction using TT hits

Only CS is analyzed at first.

Neutrino event analysis

Technical improvements

High speed scanning x 20-75

Japanese Scanning System

Scanning speed : 75cm²/h *JINST* 5:P04011, (2010)

European Scanning System

Scanning speed : 20cm²/h *NIM* A551 (2005) 261

Precision alignment (Compton alignment) S/N x 10 With noise tracks connected

With noise tracks connected both side of emulsion layer Alignment accuracy: σ=7.6μm σ=2.0μm

Reduce chance coincidence noises NIM A575 (2007) 466

High S/N discrimination (Track Ranking)

S/N x 100

JINST 5:P04009, (2010)

Likelihood analysis with the linearity and blackness of each tracks

Neutrino event analysis

Neutrino event analysis

Location efficiency

Analysis status

Data-Monte Carlo comparison of the location efficiency as a function of the visible energy in the target scintillators JHEP 11 (2013) 036 Hybrid detector: a complex simulation Reasonable agreement

17.97 x 10¹⁹ POT (~80 % of expected)

Current status

- ~19600 event registered
- ~7000 events located
- ~6700 events fully analyzed

 ν_{τ} analysis

Kinematical selection

variable $\tau \to 1h$ $\tau \to 3h$ $\tau \to \mu$ $\tau \to e$	
lepton-tag No μ or e at the primary vertex	
$z_{dec} \; (\mu \mathrm{m}) \qquad [44, 2600] < 2600 \qquad [44, 2600] < 2600$	
$p_T^{miss} ({\rm GeV}/c) < 1^{\star} < 1^{\star}$ / /	
$\phi_{lH} (\mathrm{rad}) > \pi/2^{\star} > \pi/2^{\star} / /$	
$p_T^{2ry} (\text{GeV}/c) > 0.6(0.3)^* / > 0.25 > 0.1$	
p^{2ry} (GeV/c) > 2 > 3 > 1 and < 15 > 1 and <	15
$\theta_{kink} (mrad) > 20 < 500 > 20 > 20$	
$m, m_{min} \; (\text{GeV}/c^2) \; / > 0.5 \; \text{and} < 2 \; / \; /$	

p^{miss}_T: vectorial sum of the transverse momenta of primaries (except the parent) and daughters wrt beam direction

 $p^{2ry}{}_{\!T}\!\!:$ transverse momentum of the daughter wrt parent direction

Cuts fixed since the beginning of the experiment

Data sample : The 1st and 2nd most probable bricks for all runs

	2008	2009	2010	2011	2012	Total
p.o.t. (10^{19})	1.74	3.53	4.09	4.75	3.86	17.97
0μ events	149	253	268	270	204	1144
1μ events ($p_{\mu} < 15 \text{ GeV/c}$)	542	1020	968	966	768	4264
Total events	691	1273	1236	1236	972	5408
Detected ν_{τ} candidates	-	1	-	1	3	(5)

T. Fukuda, La Thuile 2016

ν_{τ} candidate events

The 5th ν_{τ} event

Background sources

Monte Carlo simulation benchmarked on control samples.

In **yellow** improvements wrt former analyses

MC tuned on CHORUS data (cross section and fragmentation functions), validated with measured OPERA charm events.

Reduced by "track follow down", procedure and large angle scanning [Eur.Phys.J. C74 (2014) 2986]

Hadronic interactions Background for $\tau \to h$ v_{μ} v_{μ}

FLUKA + pion test beam data

Reduced by large angle scanning and nuclear fragment search [PTEP 2014, 093C01 (2014)]

Large angle muon scattering Background for $\tau \rightarrow \mu$

Measurements in the literature (Lead form factor), simulations and dedicated test-beams

[IEEE Transactions on Nuclear Science, vol.62 5]

Hadronic background reduction

Nuclear fragments: a smoking gun for the occurrence of an π interaction instead of a decay.

Large angle scanning technique

JINST 8:P01023, (2013), JINST 9:P12017, (2014)

PTEP 2014, 093C01 (2014)

 ν_{τ} analysis result

Expected signal and background events for the analyzed data sample

Channel	Expected background				Error a starl simul	Ohanna	
Channel	Charm	Had. re-interac.	Large μ -scat.	Total	Expected signal	Observed	
$\tau \to 1 h$	0.017 ± 0.003	0.022 ± 0.006	—	0.04 ± 0.01	0.52 ± 0.10	3	
$\tau \to 3h$	0.17 ± 0.03	0.003 ± 0.001	—	0.17 ± 0.03	0.73 ± 0.14	1	
$\tau \to \mu$	0.004 ± 0.001	—	0.0002 ± 0.0001	0.004 ± 0.001	0.61 ± 0.12	1	
$\tau \to e$	0.03 ± 0.01	—	_	0.03 ± 0.01	0.78 ± 0.16	0	
Total	0.22 ± 0.04	0.02 ± 0.01	0.0002 ± 0.0001	0.25 ± 0.05	2.64 ± 0.53	5	

5 observed events with 0.25 background Probability to be explained by background: 1.1×10^{-7} (Fisher, Profile likelihood)

Corresponding to 5.1σ exclusion of the background-only hypothes

Discovery of v_{\tau} appearance

Estimation of Δm_{23}^2 (90% C.L.) [2.0, 5.0] x 10⁻³ eV² (assuming full mixing) the scalar sum of the momenta of all particles measured in ECC

20

30

10

 $p_{sum}^{}(GeV/c)^{50}$

40

 ν_e oscillations μ

Results of 2008 – 2009 data sample (analysis for only 1st brick)

Detection efficiency

Reconstructed energy

	no cut	E<20GeV(3 flavor)
observed ve	19	4
expected BG	19.8±2.8 (sys.)	4.6±0.7 (②+③+④)
Results (90% C.L.)		$sin^2(2\theta_{13}) < 0.44$

 $\sin^2(2\theta_{13}) = 0.098$, $\sin^2(2\theta_{23}) = 1$, $\Delta m^2_{32} = \Delta m^2_{31} = 2.32 \times 10^{-3} \text{ eV}^2$, $\delta_{CP} = 0$, matter effects are negligible

Non-standard oscillations

How the appearance probability is modified by one possible extra (sterile) state (3+1 scheme) ?

Analysis in the 1st and 2nd bricks of the whole OPERA data sample. \rightarrow 52 v_e candidates found (Preliminary)

Rich structure. Can result in an increase or decrease of expected number of v_{τ} events. First limits on $|U_{\mu4}|^2|U_{\tau4}|^2$ from direct measurement of v_{τ}

- 1.8 x 10²⁰ pot by CNGS from 2008 to 2012 (80% of design).
- Analysis technique largely improved and detector successfully measuring $\nu_{\rm e}$, v_{μ} and v_{τ} .
- Analysis of extended data sample. Improved background evaluation.
- $5 v_{\tau}$ candidate events found with 0.25 background.
- Background-only hypothesis excluded at 5.1 σ.
 - \rightarrow Discovery of ν_{τ} appearance in the CNGS beam
- Measurement of $\Delta m_{23}^2 = [2.0-5.0] \times 10^{-3} \text{ eV}^2$.
- Upper limit for sin²(2θ₁₃)<0.44 and sin²(2θ_{new})<7.2x10⁻³ by 19 V_e events found in 2008-2009 data sample.
- v_e analysis on going for all year run data and final analysis with the full data sample close to completion (x 2.5 increase in sample).
- Search for anomalies in $v_{\mu} \rightarrow v_{e}$ and $v_{\mu} \rightarrow v_{\tau}$. First limits on $|U_{\mu4}|^{2}|U_{\tau4}|^{2}$ from direct measurement of v_{τ} .

Thank you for your kind attention !

The first v_r "appearance" candidate

Event Kinematics

VARIABLE	Measured	Selection criteria
Kink (mrad)	41 ± 2	>20
Decay length (µm)	1335 ± 35	Within 2 lead plates
P daughter (GeV/c)	12 ⁺⁶ _3	>2
Pt daughter (MeV/c)	470 ⁺²³⁰ -120	>300 (γ attached)
Missing Pt (MeV/c)	570 ⁺³²⁰ -170	<1000
$\phi ~(\text{deg})$	173 ± 2	>90

First detection of $v_{\mu} \rightarrow v_{\tau}$ oscillation in appearance mode

Reported in May 2010

Decay channel: $\tau \rightarrow 1h$

Phys. Lett. B 691 (2010) 138

25

The $2^{nd} v_{\tau}$ candidate

26

The $3^{rd} v_{\tau}$ candidate

The 4th v_{τ} candidate

Reported in March 2014 **Decay channel: τ \rightarrow 1h**

Prog. Theor. Exp. Phys. (2014) 101C01

Prog. Theor. Exp. Phys. **2014**, 101C01 (10 pages) DOI: 10.1093/ptep/ptu132

Letter

Observation of tau neutrino appearance in the CNGS beam with the OPERA experiment

OPERA Collaboration

Event Kinematics

The 5th v_{τ} candidate

10

2 3 4 z_{dec} (mm) 10

50

1.5 2 2.5 p_T^{miss} (GeV/c)

0.5

100 150 $\Delta \phi_{\tau H}$ (degree)

Phys. Rev. Lett. 115 (2015) 121802

Validation of the hadronic background by test beams

Comparison of large data sample (π^{-} beam test at CERN) with Fluka simulation \longrightarrow check the agreement and estimate the systematic uncertainty

Nuclear fragments in 1 and 3 prong interactions

Agreement with statistical error : Systematic error is 10%.