CP violation in kaon mixing towards improving its new physics reach

Filippo Sala

LPTHE Paris and CNRS

mainly based on Ligeti, Sala 1602.08494

Les Rencontres de Physique de la Vallée d'Aoste, La Thuile, 8 March 2016

Filippo Sala LPTHE Paris

CP violation in kaon mixing 0 / 13

My talk in one slide

CP violation in Kaon mixing (ϵ_{κ})

= observable sensitive to the highest flavour and CP violating scales

 $\Delta \epsilon_K |_{
m exp} \sim 0.5\%$ $\Delta \epsilon_K |_{
m SM} \sim 15\% \Rightarrow$ SM determination needs improvement!

My talk in one slide

CP violation in Kaon mixing (ϵ_{κ})

= observable sensitive to the highest flavour and CP violating scales

 $\Delta \epsilon_K |_{
m exp} \sim 0.5\%$ $\Delta \epsilon_K |_{
m SM} \sim 15\% \Rightarrow$ SM determination needs improvement!

I'll show how to "get rid" of η_{cc} , source of the largest non-parametric error

- $ightarrow ~\Delta \epsilon_{
 m {\it K}} |_{
 m SM}$ slightly reduced
- $\rightarrow\,$ Future: compute Long-Distance contribution to M_{12}

Flavour in the SM and beyond

$$\frac{\text{"SM flavour problem"}}{(y_u, y_c, y_t) \sim (10^{-6}, 10^{-2}, 1)} \sim \begin{pmatrix} 1 & 0.2 & 4 \cdot 10^{-3} \\ 0.2 & 1 & 4 \cdot 10^{-2} \\ 9 \cdot 10^{-3} & 4 \cdot 10^{-2} & 1 \end{pmatrix}$$

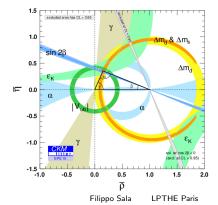
Is there a UV reason behind this pattern? Where can we test it?

Flavour in the SM and beyond

$$\frac{\text{"SM flavour problem"}}{(y_u, y_c, y_t) \sim (10^{-6}, 10^{-2}, 1)} > \begin{pmatrix} 1 & 0.2 & 4 \cdot 10^{-3} \\ 0.2 & 1 & 4 \cdot 10^{-2} \\ 9 \cdot 10^{-3} & 4 \cdot 10^{-2} & 1 \end{pmatrix}$$

Is there a UV reason behind this pattern?

Where can we test it?

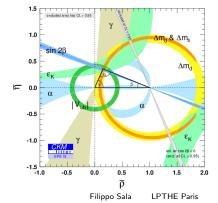


$$\frac{\text{"NP flavour problem"}}{\mathcal{L}_{\text{NP}} = \sum_{i} \frac{1}{\Lambda_{i}^{2}} \mathcal{O}_{i} \Rightarrow \boxed{\Lambda_{i} \gtrsim 10^{4} \div 10^{5} \text{ TeV}}$$

Flavour in the SM and beyond

$$\frac{\text{"SM flavour problem"}}{(y_u, y_c, y_t) \sim (10^{-6}, 10^{-2}, 1)} > \begin{pmatrix} 1 & 0.2 & 4 \cdot 10^{-3} \\ 0.2 & 1 & 4 \cdot 10^{-2} \\ 9 \cdot 10^{-3} & 4 \cdot 10^{-2} & 1 \end{pmatrix}$$

Is there a UV reason behind this pattern?

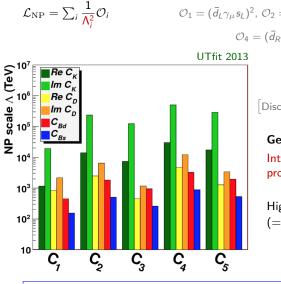


$$\frac{\text{"NP flavour problem"}}{\mathcal{L}_{\text{NP}} = \sum_{i} \frac{1}{\Lambda_{i}^{2}} \mathcal{O}_{i} \Rightarrow \boxed{\Lambda_{i} \gtrsim 10^{4} \div 10^{5} \,\text{TeV}}$$

- lowers expectations to solve SM flavour problem
- © clashes with natural solution to hierarchy problem

What are the most sensitive observables?

C



$$\mathcal{D}_1 = (\bar{d}_L \gamma_\mu s_L)^2, \ \mathcal{O}_2 = (\bar{d}_R s_L)^2, \ \mathcal{O}_3 = (\bar{d}_R^\alpha s_L^\beta) (\bar{d}_R^\beta s_L^\alpha)$$
$$\mathcal{O}_4 = (\bar{d}_R s_L) (\bar{d}_L s_R), \ \mathcal{O}_5 = (\bar{d}_R^\alpha s_L^\beta) (\bar{d}_L^\beta s_R^\alpha)$$

Disclaimer: focus on $\Delta F = 2$ processes

General Message: Intensity (flavour) frontier probes scales \gg TeV

Highest energies probed by ϵ_{κ} (= CP violation in Kaon mixing)

Interplay with energy frontier (LHC)? Needs specification of new physics models

Two (most popular) flavour pictures

Assume New Physics at scale $\Lambda \sim 1 - 10$ TeV:

 $\mathcal{L}_{\mathrm{NP}} = \sum_i \xi_i rac{c_i}{\Lambda^2} \mathcal{O}_i \qquad c_i \sim O(1) \qquad \xi_i ext{ small due to some "feature"}$

Two (most popular) flavour pictures

Assume New Physics at scale $\Lambda \sim 1 - 10$ TeV:

 $\mathcal{L}_{\mathrm{NP}} = \sum_i \xi_i rac{c_i}{\Lambda^2} \mathcal{O}_i \qquad c_i \sim O(1) \qquad \xi_i ext{ small due to some "feature"}$

CKM-like symmetries

Flavour symmetry $(U(3)^3 \text{ or } U(2)^3)$ controls NP effects

SM understanding only parametrical $(U(3)^3)$ or partly addressed $(U(2)^3)$

Partial compositeness

SM quarks mix with composite operators + anarchic flavour in composite sector

 V_{CKM} elements related to quark masses: $y_i \sim \epsilon_i^L \epsilon_i^R$, $(V_{\text{CKM}})_{ij} \sim \epsilon_i^L / \epsilon_j^L$

D'Ambrosio et al. 2002, Barbieri et al. 2011

Kaplan 1991, Contino et al 2006, ...

Filippo Sala LPTHE Paris

CP violation in kaon mixing 4 / 13

Two (most popular) flavour pictures

Assume New Physics at scale $\Lambda \sim 1 - 10$ TeV:

 $\mathcal{L}_{\mathrm{NP}} = \sum_i \xi_i rac{c_i}{\Lambda^2} \mathcal{O}_i \qquad c_i \sim O(1) \qquad \xi_i ext{ small due to some "feature"}$

CKM-like symmetries

Flavour symmetry $(U(3)^3 \text{ or } U(2)^3)$ controls NP effects

SM understanding only parametrical $(U(3)^3)$ or partly addressed $(U(2)^3)$

Only those \mathcal{O}_i present in the SM [e.g. NO $\mathcal{O}_4 = (\bar{s}_L d_R)(\bar{s}_R d_L)$] Same SM suppression, i.e. $\xi \sim V_{CKM}^{2-4}$

 $\Lambda \gtrsim$ 3 TeV ($\epsilon_K \sim B - \bar{B}$)

D'Ambrosio et al. 2002, Barbieri et al. 2011 Barbieri Buttazzo Sala Straub 2012, 2014

Partial compositeness

SM quarks mix with composite operators + anarchic flavour in composite sector $% \left({{{\rm{SM}}}} \right)$

 V_{CKM} elements related to quark masses: $y_i \sim \epsilon_i^L \epsilon_i^R$, $(V_{\text{CKM}})_{ij} \sim \epsilon_i^L / \epsilon_j^L$

All \mathcal{O}_i allowed: SM ones have $\xi \sim V_{CKM}^{2-4}$

(some) others have $\xi \sim y_i y_j$

$$m{\Lambda}\gtrsim 15$$
 TeV (ϵ_{K}) , 3 TeV $(B-ar{B})$

Kaplan 1991, Contino et al 2006, ... Barbieri Buttazzo Sala Straub Tesi 2012

CP	violation	in kao	n mixing	g 4 / 13	
----	-----------	--------	----------	----------	--

Flavour scale and new resonances at the LHC

Partial compositeness $\Lambda \simeq m_{\rho,T}$ $\Lambda \gtrsim 15 \text{ or } 3 \text{ TeV} \rightarrow \text{No NP}$ at the LHC.

CKM-like symmetries

 $\diamond~$ implement in composite models ~ (flavour violation at tree level)

ightarrow if $U(2)^3$ then $m_T \sim 1 \; {
m TeV}$, if $U(3)^3$ then $m_T \gg 1 \; {
m TeV}$

implement in supersymmetry (flavour violation at loop level)

 \rightarrow both $U(2)^3$ and $U(3)^3$: stops and gluinos within LHC8-13 reach

Flavour scale and new resonances at the LHC

Partial compositeness $\Lambda \simeq m_{\rho,T}$ $\Lambda \gtrsim 15 \text{ or } 3 \text{ TeV} \rightarrow \text{No NP}$ at the LHC.

CKM-like symmetries

implement in composite models (flavour violation at tree level)

ightarrow if $U(2)^3$ then $m_T \sim 1 \; {
m TeV}$, if $U(3)^3$ then $m_T \gg 1 \; {
m TeV}$

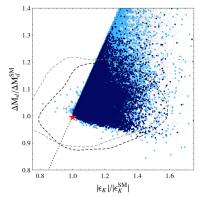
implement in supersymmetry (flavour violation at loop level)

 \rightarrow both $U(2)^3$ and $U(3)^3$: stops and gluinos within LHC8-13 reach

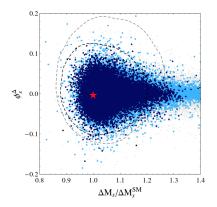
Flavour and CP violation best protected in SUSY- $U(2)^3$: sparticles at the LHC?

$U(2)^3$ and supersymmetry

All points allowed by LHC8 sparticle searches

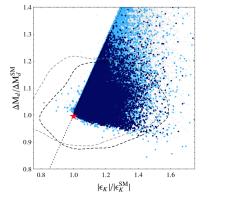


Dark: conservative exclusions Light: compressed spectra, ...

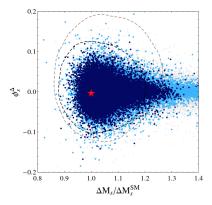


$U(2)^3$ and supersymmetry

All points allowed by LHC8 sparticle searches



Dark: conservative exclusions Light: compressed spectra, ...



What if no sparticles at LHC14?

 ϕ_s LHCb aims at $\pm 0.01 \div 0.03$ [now ± 0.07]

 $\Delta M_{d,s}$ expected lattice improvements

 ϵ_{κ} how will it progress?

CP violation in kaon mixing 6 / 13

Filippo Sala LPTHE Paris

Some expected progresses in flavour:

CKMfitter + Ligeti, Papucci 1309.2293

	2003	2013	Stage I		Stage II
$ V_{ud} $	0.9738 ± 0.0004	$0.97425 \pm 0 \pm 0.00022$	id		id
$ V_{us} (K_{\ell 3})$	$0.2228 \pm 0.0039 \pm 0.0018$	$0.2258 \pm 0.0008 \pm 0.0012$	0.22494 ± 0.0006		id
$ \epsilon_K $	$(2.282 \pm 0.017) \times 10^{-3}$	$(2.228 \pm 0.011) \times 10^{-3}$	id		id
$\Delta m_d [\mathrm{ps}^{-1}]$	0.502 ± 0.006	0.507 ± 0.004	id		id
$\Delta m_s [\mathrm{ps}^{-1}]$	> 14.5 [95% CL]	17.768 ± 0.024	id		id
$V_{cb} \times 10^3 \ (b \to c \ell \bar{\nu})$	$41.6 \pm 0.58 \pm 0.8$	$41.15 \pm 0.33 \pm 0.59$	42.3 ± 0.4	[17]	42.3 ± 0.3
$V_{ub} \times 10^3 \ (b \to u \ell \bar{\nu})$	$3.90 \pm 0.08 \pm 0.68$	$3.75 \pm 0.14 \pm 0.26$	3.56 ± 0.10	[17]	3.56 ± 0.08
$\sin 2\beta$	0.726 ± 0.037	0.679 ± 0.020	0.679 ± 0.016	[17]	0.679 ± 0.008
$\alpha \pmod{\pi}$	_	$(85.4^{+4.0}_{-3.8})^{\circ}$	$(91.5 \pm 2)^{\circ}$	[17]	$(91.5 \pm 1)^{\circ}$
$\gamma \pmod{\pi}$	—	$(68.0^{+8.0}_{-8.5})^{\circ}$	$(67.1 \pm 4)^{\circ}$	[17, 18]	$(67.1 \pm 1)^{\circ}$
β_s	_	$0.0065^{+0.0450}_{-0.0415}$	0.0178 ± 0.012	[18]	0.0178 ± 0.004

 $\label{eq:stage_stage_stage_stage} {\sf Stage} \; {\sf I} = 7 \; {\sf fb}^{-1} \; {\sf LHCb} + 5 \; {\sf fb}^{-1} \; {\sf Belle-II}, \quad {\sf Stage} \; {\sf II} = 50 \; {\sf fb}^{-1} \; {\sf LHCb} + {\sf Belle-II}$

Example: $\phi_s = \phi_s^{\Delta} - 2|\beta_s|$ of SUSY slide

Some expected progresses in flavour:

CKMfitter + Ligeti, Papucci 1309.2293

2013	a		
	Stage I		Stage II
$0.97425 \pm 0 \pm 0.00022$	id		id
$2258 \pm 0.0008 \pm 0.0012$	0.22494 ± 0.0006		id
$2.228 \pm 0.011) \times 10^{-3}$	id		id
0.507 ± 0.004	id		id
17.768 ± 0.024	id		id
$41.15 \pm 0.33 \pm 0.59$	42.3 ± 0.4	[17]	42.3 ± 0.3
$3.75 \pm 0.14 \pm 0.26$	3.56 ± 0.10	[17]	3.56 ± 0.08
0.679 ± 0.020	0.679 ± 0.016	[17]	0.679 ± 0.008
$(85.4^{+4.0}_{-3.8})^{\circ}$	$(91.5 \pm 2)^{\circ}$	[17]	$(91.5 \pm 1)^{\circ}$
$(68.0^{+8.0}_{-8.5})^{\circ}$	$(67.1 \pm 4)^{\circ}$	[17, 18]	$(67.1 \pm 1)^{\circ}$
$0.0065\substack{+0.0450\\-0.0415}$	0.0178 ± 0.012	[18]	0.0178 ± 0.004
			$\begin{array}{ccc} 0.0065^{+0.0450}_{-0.0415} & 0.0178 \pm 0.012 & [18] \\ 0^{-1} \text{ Belle-II}, & \text{Stage II} = 50 \text{ fb}^{-1} \end{array}$

 ϵ_{κ} : till now played a leading role, both in general and in specific models!

What about its future?

$\epsilon_{K} = CP$ violation in Kaon mixing

Progress is needed in the SM determination of $\epsilon_{\mathcal{K}}!$

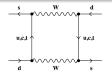
$\epsilon_{\kappa} = CP$ violation in Kaon mixing

 $\epsilon_{K} = \frac{\mathcal{A}(K_{L} \to (\pi\pi)_{I=0})}{\mathcal{A}(K_{S} \to (\pi\pi)_{I=0})} (1 + O(10^{-4})) \text{ with respect to measurement} \\ |\epsilon_{K}|_{\exp} = (2.228 \pm 0.011) \times 10^{-3} \quad |\epsilon_{K}|_{SM} = (2.16^{(*)} \pm 0.22) \times 10^{-3} \\ (*) \text{ inputs from CKM fit without } \epsilon_{K}$

Progress is needed in the SM determination of $\epsilon_{\mathcal{K}}!$

Usual evaluation of ϵ_K

$$|\epsilon_{\mathcal{K}}|_{\mathrm{SM}} = \kappa_{\epsilon} C_{\epsilon} \hat{B}_{\mathcal{K}} |V_{cb}|^2 \lambda^2 \bar{\eta} \left(|V_{cb}|^2 (1-\bar{\rho}) \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_t, x_c) - \eta_{cc} x_c \right)$$



 κ_{ϵ} summarises long distance and absorptive contribution Buras Guadagnoli Isidori 1002.3612

Filippo Sala LPTHE Paris CP violation in kaon mixing

8 / 13

Error budget of $\epsilon_{\mathcal{K}}$ in the Standard Model

$$|\epsilon_{\mathcal{K}}|_{\mathrm{SM}} = \kappa_{\epsilon} C_{\epsilon} \hat{B}_{\mathcal{K}} |V_{cb}|^2 \lambda^2 \bar{\eta} \left[|V_{cb}|^2 (1-\bar{\rho}) \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_t, x_c) - \eta_{cc} x_c \right]$$

CKM inputs			$\kappa_{\epsilon}^{(\prime)}$	m_t			$ V_{cb} $		$\bar{\rho}$	$ \Delta \epsilon_K / \epsilon_K _{\text{tot.}}$
tree-level	7.3%	4.0%	1.1%	1.7%	0.8%	1.3%	11.1%	10.4%	5.4%	18.4%
SM CKM fit	7.4%	4.0%	1.7%	1.7%	0.8%	1.3%	4.2%	2.0%	0.8%	10.1%

CKM parameters	SM CKM fit [5]	tree-level only
λ	0.22543 ± 0.00037	0.2253 ± 0.0008
$ V_{cb} (=A\lambda^2)$	$(41.80 \pm 0.51) \times 10^{-3}$	$(41.1 \pm 1.3) \times 10^{-3}$
$\bar{\eta}$	0.3540 ± 0.0073	0.38 ± 0.04
$\bar{\rho}$	0.1504 ± 0.0091	0.115 ± 0.065

 $\eta_{cc} = 1.87 \pm 0.76$ NNLO in Brod Gorbhan 1008.2036 series converges badly!

Error budget of $\epsilon_{\mathcal{K}}$ in the Standard Model

$$|\epsilon_{\mathcal{K}}|_{\mathrm{SM}} = \kappa_{\epsilon} C_{\epsilon} \hat{B}_{\mathcal{K}} |V_{cb}|^2 \lambda^2 \bar{\eta} \left[|V_{cb}|^2 (1-\bar{\rho}) \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_t, x_c) - \eta_{cc} x_c \right]$$

CKM inputs			$\kappa_{\epsilon}^{(\prime)}$				$ V_{cb} $		$\bar{\rho}$	$ \Delta \epsilon_K / \epsilon_K _{\text{tot.}}$
tree-level	7.3%	4.0%	1.1%	1.7%	0.8%	1.3%	11.1%	10.4%	5.4%	18.4%
SM CKM fit	7.4%	4.0%	1.7%	1.7%	0.8%	1.3%	4.2%	2.0%	0.8%	10.1%

CKM parameters	SM CKM fit [5]	tree-level only
λ	0.22543 ± 0.00037	0.2253 ± 0.0008
$ V_{cb} (=A\lambda^2)$	$(41.80 \pm 0.51) \times 10^{-3}$	$(41.1 \pm 1.3) \times 10^{-3}$
$\bar{\eta}$	0.3540 ± 0.0073	0.38 ± 0.04
$\bar{\rho}$	0.1504 ± 0.0091	0.115 ± 0.065

 $\eta_{cc} = 1.87 \pm 0.76$ NNLO in Brod Gorbhan 1008.2036 series converges badly!

Future?

$$\Delta V_{cb} \longrightarrow 0.3 \times 10^{-3} \Rightarrow \Delta \epsilon_{\kappa} / \epsilon_{\kappa} \sim 2.5\%$$
 (similarly for $\bar{\eta}, \bar{\rho}$)

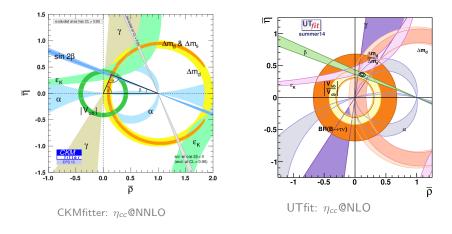
then η_{cc} even more important!

CP violation in kaon mixing 9 / 13

To further appreciate importance of η_{cc}

 $\eta_{cc} = 1 \, (LO) + 0.38 \, (NLO) + 0.49 \, (NNLO)$

Treated differently by different groups (see widths of ϵ_{κ} bands):



Filippo Sala LPTHE Paris

CP violation in kaon mixing 10 / 13

A step back: (usual) evaluation of ϵ_K

$$\epsilon_{K} = \frac{\mathcal{A}(K_{L} \to (\pi\pi)_{I=0})}{\mathcal{A}(K_{S} \to (\pi\pi)_{I=0})} \qquad |K_{S,L}\rangle = p|K^{0}\rangle \pm q|\bar{K^{0}}\rangle, \ i\frac{d}{dt}\binom{K^{0}}{\bar{K^{0}}} = \binom{M-i\frac{\Gamma}{2}\binom{K^{0}}{\bar{K^{0}}}}{K^{0}}$$

$$|\epsilon_{\mathcal{K}}| = \frac{\sin \phi_{\epsilon}}{2} \arg \left(-\frac{M_{12}}{\Gamma_{12}} \right) \qquad \qquad \Delta m \simeq 2|M_{12}| \quad \Delta \Gamma \simeq -2|\Gamma_{12}|$$

A step back: (usual) evaluation of ϵ_K

$$\epsilon_{\mathcal{K}} = \frac{\mathcal{A}(\mathcal{K}_{L} \to (\pi\pi)_{I=0})}{\mathcal{A}(\mathcal{K}_{S} \to (\pi\pi)_{I=0})} \qquad |\mathcal{K}_{S,L}\rangle = p|\mathcal{K}^{0}\rangle \pm q|\bar{\mathcal{K}^{0}}\rangle, \ i\frac{d}{dt}\binom{\mathcal{K}^{0}}{\bar{\mathcal{K}^{0}}} = \binom{\mathcal{K} - i\frac{\Gamma}{2}}{\mathcal{K}^{0}}$$

$$|\epsilon_{\mathcal{K}}| = \frac{\sin \phi_{\epsilon}}{2} \arg \left(-\frac{M_{12}}{\Gamma_{12}} \right) \qquad \qquad \Delta m \simeq 2|M_{12}| \quad \Delta \Gamma \simeq -2|\Gamma_{12}|$$

 $|\epsilon_{\mathcal{K}}|$ independent of Kaon phases but: M_{12} and Γ_{12} computed in different ways...

 $2m_K M_{12} = \langle \bar{K}^0 | \mathcal{H} | K_0 \rangle^* =$ short- plus long- distance contributions,

 $\Gamma_{12} = \sum_f \mathcal{A}(K^0 \to f)^* \mathcal{A}(\bar{K}^0 \to f)$ dominated by $f = (\pi \pi)_{I=0}$, on the lattice

...so final result depends on phase convention:

$$|\epsilon_{\mathcal{K}}| = \sin \phi_{\epsilon} \left(\frac{\mathrm{Im} \mathcal{M}_{12}^{\mathrm{SD}}}{\Delta m} - \frac{\mathrm{Im} \Gamma_{12}}{2 \mathrm{Re} \Gamma_{12}} + \frac{\mathrm{Im} \mathcal{M}_{12}^{\mathrm{LD}}}{\Delta m} \right) = \frac{\kappa_{\epsilon}}{\sqrt{2}} \frac{\mathrm{Im} \mathcal{M}_{12}^{\mathrm{SD}}}{\Delta m}$$

$$|\epsilon_{\mathcal{K}}|_{\mathrm{SM}} = \kappa_{\epsilon} C_{\epsilon} \hat{B}_{\mathcal{K}} |V_{cb}|^2 \lambda^2 \bar{\eta} \left[|V_{cb}|^2 (1-\bar{\rho}) \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_t, x_c) - \eta_{cc} x_c \right]$$

Our evaluation of ϵ_K

Rephase Kaons to take advantage of this phase dependence!

$$\frac{|\mathbf{K}^{0}\rangle \rightarrow |\mathbf{K}^{0}\rangle' = e^{i\lambda_{c}/|\lambda_{c}|}|\mathbf{K}^{0}\rangle, \qquad |\mathbf{\bar{K}^{0}}\rangle \rightarrow |\mathbf{\bar{K}^{0}}\rangle' = e^{-i\lambda_{c}/|\lambda_{c}|}|\mathbf{\bar{K}^{0}}\rangle}{\lambda_{c} = V_{cd}V_{cs}^{*} \simeq -\lambda(1+\bar{\eta}|V_{cb}|^{2})}$$

"charm box" becomes real \Rightarrow no η_{cc} term in $\text{Im}M_{12}^{SD} \Rightarrow$ $\text{Im}M_{12}^{SD}$ increases, κ_{ϵ} decreases

...so final result depends on phase convention:

$$|\epsilon_{\mathcal{K}}| = \sin \phi_{\epsilon} \left(\frac{\mathrm{Im} \mathcal{M}_{12}^{\mathrm{SD}}}{\Delta m} - \frac{\mathrm{Im} \Gamma_{12}}{2 \mathrm{Re} \Gamma_{12}} + \frac{\mathrm{Im} \mathcal{M}_{12}^{\mathrm{LD}}}{\Delta m} \right) = \frac{\kappa_{\epsilon}}{\sqrt{2}} \frac{\mathrm{Im} \mathcal{M}_{12}^{\mathrm{SD}}}{\Delta m}$$

$$|\epsilon_{\mathcal{K}}|_{\mathrm{SM}} = \kappa_{\epsilon} C_{\epsilon} \hat{B}_{\mathcal{K}} |V_{cb}|^2 \lambda^2 \bar{\eta} \left[|V_{cb}|^2 (1-\bar{\rho}) \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_t, x_c) - \eta_{cc} x_c \right]$$

Our evaluation of ϵ_K

Rephase Kaons to take advantage of this phase dependence!

$$\frac{|\overline{K^{0}}\rangle \rightarrow |\overline{K^{0}}\rangle' = e^{i\lambda_{c}/|\lambda_{c}|}|\overline{K^{0}}\rangle, \qquad |\overline{K^{0}}\rangle \rightarrow |\overline{K^{0}}\rangle' = e^{-i\lambda_{c}/|\lambda_{c}|}|\overline{K^{0}}\rangle}{\lambda_{c} = V_{cd}V_{cs}^{*} \simeq -\lambda(1+\bar{\eta}|V_{cb}|^{2})}$$

"charm box" becomes real \Rightarrow no η_{cc} term in Im $M_{12}^{SD} \Rightarrow$ Im M_{12}^{SD} increases, κ_{ϵ} decreases

	CKM inputs	η_{cc}	η_{ct}	$\kappa_{\epsilon}^{(\prime)}$	m_t	m_c	\widehat{B}_{K}	$ V_{cb} $	$\bar{\eta}$	$\bar{\rho}$	$ \Delta \epsilon_K / \epsilon_K _{\text{tot.}}$
Usual evaluation	tree-level	7.3%	4.0%	1.1%	1.7%	0.8~%	1.3%	11.1%	10.4%	5.4%	18.4%
	SM CKM fit	7.4%	4.0%	1.7%	1.7%	0.8~%	1.3%	4.2%	2.0%	0.8%	10.1%
Our evaluation	tree-level	—	3.4%	5.2%	1.5%	1.2%	1.3%	9.5%	8.9%	4.5%	15.6%
	SM CKM fit	_	3.4%	5.9%	1.5%	1.3%	1.3%	3.6%	1.7%	0.7%	8.3%

...so final result depends on phase convention:

$$|\epsilon_{\mathcal{K}}| = \sin \phi_{\epsilon} \left(\frac{\mathrm{Im} \mathcal{M}_{12}^{\mathrm{SD}}}{\Delta m} - \frac{\mathrm{Im} \Gamma_{12}}{2 \mathrm{Re} \Gamma_{12}} + \frac{\mathrm{Im} \mathcal{M}_{12}^{\mathrm{LD}}}{\Delta m} \right) = \frac{\kappa_{\epsilon}}{\sqrt{2}} \frac{\mathrm{Im} \mathcal{M}_{12}^{\mathrm{SD}}}{\Delta m}$$

$$|\epsilon_{\mathcal{K}}|_{\mathrm{SM}} = \kappa_{\epsilon} C_{\epsilon} \hat{B}_{\mathcal{K}} |V_{cb}|^2 \lambda^2 \bar{\eta} \left[|V_{cb}|^2 (1-\bar{\rho}) \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_t, x_c) \right]$$

CP violation in kaon mixing

Conclusion and Outlook

CP violation in Kaon mixing (ϵ_{κ})

= observable sensitive to the highest flavour and CP violating scales

 $\Delta \epsilon_{\rm \textit{K}}|_{\rm exp} \sim 0.5\% \quad \Delta \epsilon_{\rm \textit{K}}|_{\rm SM} \sim 15\% \ \Rightarrow \ \text{SM} \ \text{determination needs improvement!}$

the importance of η_{cc} is somehow overlooked in the community

This talk: η_{cc} can be "removed" via a rephasing

Implications:

- $\rightarrow \Delta \epsilon_{\kappa}|_{\rm SM}$ slightly reduced
- ightarrow Future: compute Long-Distance contribution to $M_{12}
 ightarrow$

Back up

Filippo Sala LPTHE Paris

CP violation in kaon mixing 13/13

$$|\epsilon_{\mathcal{K}}|_{\mathrm{SM}} = \frac{k_{\epsilon}^{(\prime)}}{c_{\epsilon}} \hat{B}_{\mathcal{K}} |V_{cb}|^2 \lambda^2 \bar{\eta} \left(|V_{cb}|^2 (1-\bar{\rho}) \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_t, x_c) \right)$$

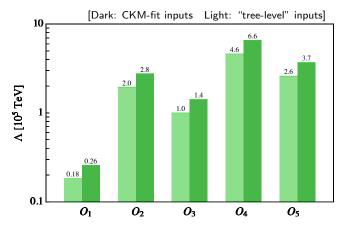
Parameter value Δm 3.484(6) × 10 ⁻¹² MeV 407 614(24) MeV
n_{K^0} 497.614(24) MeV
$\Delta\Gamma$ 7.3382(33) × 10 ⁻¹² MeV
$\epsilon_K $ (2.228 ± 0.011) × 10 ⁻³
b_{ϵ} (43.52 ± 0.05)°
$\epsilon'/\epsilon $ (1.66 ± 0.23) × 10 ⁻³
$A_0/A_2 $ 22.45(6)
$A_0 $ $3.32(2) \times 10^{-7} \text{ GeV}$
η_{cc} 1.87(76)
0.496(47)
0.5765(65)
$\overline{n}_t(\overline{m}_t)$ 162.3(2.3) GeV
$\overline{n}_c(\overline{m}_c)$ 1.275(25) GeV
\hat{B}_{K} 0.7661(99)
$f_K = 156.3(0.9) \text{ MeV}$
$m(A_2 e^{-i\delta_2}) = -6.99(0.20)(0.84) \times 10^{-13} \mathrm{GeV}$
$m(A_0 e^{-i\delta_0}) = -1.90(1.22)(1.04) \times 10^{-11} \mathrm{GeV}$

	CKM inputs	$ \epsilon_K \times 10^3$	$\kappa_{\epsilon}^{(\prime)}$	$\xi^{(\prime)} \times 10^4$
Usual evaluation	tree-level	2.30 ± 0.42	0.963 ± 0.010	-0.57 ± 0.48
Osual evaluation	${ m SM}$ CKM fit	2.16 ± 0.22	0.943 ± 0.016	-1.65 ± 0.17
Our evaluation	tree-level	2.38 ± 0.37	0.844 ± 0.044	-6.99 ± 0.92
Our evaluation	SM CKM fit	2.24 ± 0.19	0.829 ± 0.049	-7.83 ± 0.26

Bounds on New Physics

 $\mathcal{L}_{\rm NP} = \sum_i \frac{1}{\Lambda^2} \mathcal{O}_i$

$$\mathcal{O}_1 = (\bar{d}_L \gamma_\mu s_L)^2, \ \mathcal{O}_2 = (\bar{d}_R s_L)^2, \ \mathcal{O}_3 = (\bar{d}_R^\alpha s_L^\beta) (\bar{d}_R^\beta s_L^\alpha)$$
$$\mathcal{O}_4 = (\bar{d}_R s_L) (\bar{d}_L s_R), \ \mathcal{O}_5 = (\bar{d}_R^\alpha s_L^\beta) (\bar{d}_L^\beta s_R^\alpha)$$



*Generic but well defined bounds, and actually directly valid for some models (e.g. fermion resonances in CHM, now $m_T > 30$ TeV)

Filippo Sala LPTHE Paris CP violation in kaon mixing 13 / 13