Common Solution Of Three Cosmic Puzzles ?*

Arnon Dar

La Thuile , Italy 7/3/2016

* Origin of :

The high energy cosmic ray positrons (PAMELA, Fermi-LAT, AMS)

The high energy gamma ray background radiation (EGRET, Fermi-LAT)

The high energy astronomical neutrinos (IceCube)

In collaboration with Shlomo dado

Puzzle 2

IceCube Astronomical Neutrino Background

The Gamma-ray Background Radiation (GBR)

Hadronic Meson Production by High Energy Cosmic Rays In Source, In the ISM and In the IGM, is Mostly by

$$pp \to \pi^{0}X, \ \pi^{0} \to 2\gamma \qquad < E_{\gamma} \geq \cong (< x_{\pi} > /2)E_{p} \sim E_{p} / 10$$

$$pp \to \pi^{+}X, \ \pi^{+} \to \mu^{+}\nu_{\mu} \to e^{+}\nu_{e}\bar{\nu}_{e}\nu_{\mu} \qquad < E_{l} \geq \cong (< x_{\pi} > /4)E_{p} \sim E_{p} / 20$$

$$pp \to \pi^{-}X, \ \pi^{-} \to \mu^{-}\bar{\nu}_{\mu} \to e^{-}\nu_{e}\bar{\nu}_{e}\bar{\nu}_{\mu} \qquad < E_{l} \geq \cong (< x_{\pi} > /4)E_{p} \sim E_{p} / 20$$

 \rightarrow Unique relations between the cosmic fluxes of γ , v, and e^+

hadronic meson production may be taken over by photo meson production $p \gamma \rightarrow \pi X$ only at very high energies:

GZK (1966):
$$p + \gamma_{BKG} \rightarrow \pi X$$
BKG = DGL + FIR + CMBEffective Threshold:25 PeV 4 EeV 40 EeV

Positron Production In The Local ISM By High Energy Primary Cosmic Ray Nucleons

Model: Steady State Leaky Box Model + Fynman Scaling

$$pp \rightarrow \mu^{+}X \qquad \mu^{+} \rightarrow e^{+}v_{e}\overline{v}_{\mu} \qquad \langle E(e^{+}) \rangle \cong E(\mu^{+})/3$$

$$\begin{bmatrix} \frac{d}{dE} [b(E)\Phi_{e^{+}}] = J_{e^{+}}(E)] \qquad b(E) = \frac{dE}{dt} \\ [J_{e^{+}}(E) \approx F_{e^{+}}(\beta_{j}) \sigma_{in}(pp) c \quad n_{ISM} \quad \Phi_{p}(E)] \qquad \varepsilon^{-\beta_{j}} \\ \Rightarrow \qquad \Phi_{e^{+}} = \frac{J_{e^{+}}(E) \tau_{e^{+}}}{(\beta_{j}-1)} \qquad \text{where} \quad \tau_{e^{+}} \equiv E/(dE/dt) = E/b(E) \\ \Phi_{p}(E) \approx 1.8 (E/GeV)^{-2.7} \quad [1/GeV cm^{2} sr s] \quad \text{for} \quad E < PeV \quad (PDG \ 2014) \\ \sigma_{in}(pp) \approx 30 (E/GeV)^{0.058} \text{ mb}; \qquad \beta_{j} = 2.64 \rightarrow K_{e^{+}}(\beta_{j}) \approx 7 \times 10^{-3} \\ \text{Local} \quad n_{ISM} = 0.9 \text{ cm}^{-3} \quad (Calberla \ and \ Dedes \ 2008) \\ \boxed{1/\tau_{e^{+}} = 1/\tau_{rad} + 1/\tau_{esc}}$$

Kolmogorov (1941), ... CR Be10 / Be9 ratio → ... ,... Lipari(2014):

$$t_{dif} = \frac{R^2}{2D} \approx 7.5 \times 10^{14} \left(\frac{R}{4 \text{ kpc}}\right)^2 \left(\frac{E}{\text{GeV}}\right)^{-1/3} \text{ s}$$

In the Thomson regime:

FIG. 1.— Interstellar radiation field energy density: solid R = 0 kpc, z = 0 kpc; dashed line, R = 3 kpc, z = -0.05 dotted line, R = 4 kpc, z = 0 kpc; dash-dotted line, R = 7.5 z = 0 kpc.

Hadronic production by cosmic ray nucleons yields:

$$\begin{bmatrix} \Phi_{\nu}(E) = (F_{\nu}/F_{\gamma}) \Phi_{\gamma}(E) \end{bmatrix}$$

$$F_{\nu}/F_{\gamma} \ge (m_{\pi^{\pm}}/2 m_{\pi^{0}})^{\beta_{j}-1} \qquad (+ K \text{ decay } +...$$

which cannot be tested directly :

The Fermi-LAT $\Phi_{\gamma}(E)$ observed at E< 820 GeV and attenuated by $\gamma + \gamma_{BKG} \rightarrow e^+ + e^-$

The IceCube $\Phi_{v}(E)$ observed at E>50 TeV

But, $\Phi_v(E)$ obtained from the observed EGB and GBR at E~100 GeV can be extrapolated to E>20 TeV using $\Phi_v(E) \propto \Phi_p(20 < 1+z>E)$ <u>at source</u>

The Extragalactic Gamma Ray Background (EGB)

Broad-band emission spectrum of PKS 2155-304, with simultaneous measurements in the optical band by the ATOM telescope, in the X-ray band by RXTE and Swift, in the high energy band by Fermi, and at very high energies by H.E.S.S. PKS 2155-304 is one of the brightest and most studied BL Lacs and is often considered the prototype of X-ray selected BL Lacs.

The Extragalactic Neutrino Background (ENB)

Ackermann et al. 2015: Absorbed EGB:

$$\Phi_{\gamma}(EGB) \approx \left[\left(6.4 \times 10^{-7} (E/GeV)^{-2.30} \right] e^{-E/366 \, GeV} \text{ fu} \right]$$

Estimated Unabsorbed EGB
 \Rightarrow per v flavor and E< 20 TeV:

$$\Phi_{\nu}(\text{EGB}) \approx 0.64 \, \Phi_{\gamma}(\text{EGB}) \approx 4.1 \times 10^{-7} (\text{E/GeV})^{-2.30} \text{ fu}$$

where $fu=GeV^{-1}cm^{-2}s^{-1}sr^{-1}$ is the flux unit

For a universal CR flux, $\Phi_v(E) \propto \Phi_p(20 < 1+z > E)$ max SFR around 1+z=2.5 ==> knee around 20 TeV,

 \Rightarrow per v flavor and E>20 TeV:

$$\left[E^2 \Phi_{\nu}(EGB) \approx 0.80 \times 10^{-8} (E/100 \text{ TeV})^{-0.61} \text{ GeV}^2 \text{fu} \right]$$

The predicted sky distribution of the neutrino background radiation is the sky distribution of the HE unabsorbed gamma background radiation, i.e., roughly that of the GBR at 100 GeV

Conclusions

The observed fluxes, spectra, and sky distributions of the high energy diffuse backgrounds of astronomical γ 's and v's, and the CR e⁺'s observed near Earth, satisfy simple relations, which are expected from their common production in high energy hadronic collisions of cosmic rays in their Galactic and extragalactic sources. **Their observed spectra indicate:** The e^+ 's observed near Earth are produced in the local ISM. The high energy γ 's and ν 's are produced inside/near source (blazars, mostly ultrahigh frequency peaked BL Lac objects).

