Measurement of the transverse momentum spectrum of the Higgs boson decaying into WW with the CMS experiment

LaThuile 2016: Les Rencontres de Physique de la Vallée d'Aoste

<u>Lorenzo Viliani</u> On behalf of the CMS Collaboration

University & INFN of Firenze (Italy)

6th-12th March 2016

Reference: CMS-HIG-PAS-15-010

State of the art

- The Higgs boson transverse momentum (p_T^H) spectrum can be affected by the presence of new physics and its measurement allows testing the existing theoretical calculations in the SM Higgs sector.
- \bullet Higgs p_{τ} differential and fiducial measurements at 8 TeV have been reported by ATLAS and CMS.

INFN

Measurement basics

 The measurement of the fiducial integrated cross section and transverse momentum spectrum for the Higgs boson production in H→WW→2l2v decays is performed.

• H→WW→2l2v signature:

- Two isolated high p_T electrons or muons with opposite charge;
- Moderate MET.

• With respect to $H \rightarrow ZZ \rightarrow 4\ell$ or $H \rightarrow \gamma\gamma$:

- Significantly higher σ×BR;
- Worst p_T^H resolution due to the presence of neutrinos.

$\mathbf{p}_{_{\!T}}^{^{_{\!H}}}$ can be reconstructed using transverse observables

$$p_T^H = |\vec{p}_T^{\ \ell\ell} + \vec{E}_T^{miss}|$$

L Viliani - LaThuile 2016

Main backgrounds

Non resonant WW

- Sizeable at small values of p_{T}^{H} .
- Same final state as signal but slightly different kinematics.

tt background

- Dominant at large values of p_T^{H} .
- Characterized by 2 b-jets.
- Suppressed using a b-jet veto.

• Other backgrounds: DY $\rightarrow \tau^+\tau^-$, W+jets, W $\gamma^{(*)}$, WZ, ZZ, VVV (V=W,Z)

Main backgrounds estimated using data driven techniques.

Analysis strategy

- Event selection based on the previously published H→WW→2ℓ2v measurements (JHEP01(2014)096).
 - Important difference: inclusive in jets multiplicity.
- The p_T^{H} spectrum is binned.
 - accurate binning needed to avoid large bin migration effects.
- 2D template fit used to measure the signal strength in each bin:
 - di-lepton mass (m_{ll}) and transverse mass (m_T) used to discriminate signal and backgrounds.

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\ell\ell} E_{\rm T}^{\rm miss} (1 - \cos\Delta\phi(\ell\ell, E_{\rm T}^{\rm miss}))}$$

5

09/03/2016

Reconstructed Higgs p_T spectrum

- Backgrounds are subtracted and the signal strength is obtained in each bin using a Maximum Likelihood fit.
- Good agreement between data and theory (after the simulation of the detector).

- Results extrapolated to a fiducial phase space with a regularized unfolding procedure.
- Direct comparison with theoretical predictions and other experimental results.

INFN

Unfolding

 Basic principle: use the MC signal samples to make the distribution of the variable of interest before and after the full GEANT4 simulation of the CMS detector and the event reconstruction.

19.4 fb⁻¹ (8 TeV) **CMS** *Preliminary* Data

09/03/2016

The unfolded spectrum is compared with two SM-based theory predictions:

ggH production simulated using the **HRes** or **PowhegV2** programs. •

Comparison with theory

Perspectives with 13 TeV data

	process	$\sigma_{13 {\rm TeV}}/\sigma_{8 {\rm TeV}}$
Large increase of ggH cross section	$Z/\gamma^* \to \ell^+ \ell^-$	1.7
with respect to 8 TeV (\sim 2.2).	$WW \rightarrow 2\ell 2\nu$	1.8
Deckarounde also increase	W+jets	1.6
	$\mathrm{V}\gamma^*$	2
(especially tt).	ZZ	2
	$t\overline{t}$	3.5
	VVV	2.5

- With ~30 fb⁻¹ at the end of 2016 we expect ~3.3 times the current number of signal events.
 - Reduction to ~55% of the statistical uncertainty.
 - Considerable improvement in the p_{τ}^{H} shape constraint.
- Improvement of systematic uncertainties.
 - More statistics for data driven estimations.

Conclusions

- The first Higgs boson differential measurement performed at LHC in the H→WW→2ℓ2v decay channel.
- p_T^H spectrum reported in a fiducial phase space using a regularized unfolding procedure.
- Results show a good agreement with theoretical expectations within experimental uncertainties.
- Results competitive with existing measurements.
- Large improvement expected with new 13 TeV data.

BACKUP

Process	Normalization	Shape	Control/template sample
WW	data	$\operatorname{simulation}$	events at high $m_{\ell\ell}$ and $m_{\rm T}^{\rm H}$
Тор	data	$\operatorname{simulation}$	top-enriched control region
W+jets	data	data	events with loosely identified leptons
$\mathrm{W}\gamma$	simulation	data	events with an identified γ
$\mathrm{W}\gamma^*$	data	simulation	$W\gamma^* \to 3\mu \text{ sample}$
$Z/\gamma^* \to \tau \tau$	data	data	au embedded sample

Systematic uncertainties

 luminosity, lepton momentum scale and resolution, MET scale and resolution, jet energy scale, b tagging uncertainty.

Background estimation uncertainties:

 related to the normalization estimation of each background, *e.g.* tt background.

Theoretical uncertainties:

 related to the theoretical models used for simulating signal and background events.

Uncertainties on background	s contributions			
Source	Uncertainty			
$t\bar{t}$, tW	$\sim 20 - 50\%$			
W+ jet	$\sim 40\%$			
WZ, ZZ	$\sim 4\%$			
$V\gamma/\gamma^*$	$\sim 30\%$			
Experimental uncert	ainties			
Source	Uncertainty			
Luminosity	2.6%			
Trigger efficiency	1 - 2%			
Lepton reconstruction and ID	3 - 4%			
Lepton energy scale	2 - 4%			
$E_{\rm T}^{\rm miss}$ modeling	2%			
Jet energy scale	10%			
Pileup multiplicity	2%			
B-mistag modeling	$\sim 3\%$			
Theoretical uncertainties				
Source	Uncertainty			
b-veto jet binning	$\sim 1 - 2\%$			
PDF	$\sim 1\%$			
WW shape	$\sim 1\%$			

 Each source of uncertainty is propagated as a nuisance parameter through the fit.

m₁₁ shapes

09/03/2016

L Viliani - LaThuile 2016

Process	Yields					
	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6
ggH	54 ± 4	126 ± 7	78 ± 7	2.5 ± 0.3	9 ± 2	4.0 ± 0.9
qqH	0.78 ± 0.11	4.4 ± 0.3	11.3 ± 0.9	0.87 ± 0.08	4.6 ± 0.5	1.7 ± 0.2
WH	1.4 ± 1.1	5.1 ± 1.5	6.5 ± 2.7	0.31 ± 0.15	1.4 ± 1.0	0.5 ± 0.3
ZH	0.6 ± 0.5	1.6 ± 0.7	2.2 ± 1.3	0.13 ± 0.10	0.45 ± 0.15	0.19 ± 0.11
Total signal	318 ± 12					
qqWW	1496 ± 100	2829 ± 233	751 ± 221	413 ± 121	135 ± 62	161 ± 55
ggWW	586 ± 163					
Top 0 jets			573 =	± 160		
Top ≥1 jet	137 ± 34	906 ± 154	1532 ± 190	714 ± 126	241 ± 53	139 ± 50
W+jets	835 ± 195					
DYττ	181 ± 58					
VV	236 ± 25					
$V\gamma^*$	215 ± 77					
Vγ	154 ± 115					
VVV	31 ± 18					
Total background	12264 ± 575					
Data	12566 ± 112					

Bin <i>i</i>	da. / dnH	Total uncertainty	Statistical	Type A	Type B uncertainty	Type C uncertainty
$[C_{o}V]$	$uv_1/up_{T,i}$	(up/down)	uncertainty	uncertainty	(up/down)	(up/down)
	[fb/Gev]	[fb/GeV]	[fb/GeV]	[fb/GeV]	[fb/GeV]	[fb/GeV]
0-15	0.615	+0.370/-0.307	± 0.246	± 0.179	+0.211/-0.038	+0.0782/-0.0608
15-45	0.561	+0.210/-0.157	± 0.120	± 0.093	+0.146/-0.041	+0.0395/-0.0327
45-85	0.215	+0.084/-0.078	± 0.059	± 0.037	+0.047/-0.034	+0.0089/-0.0084
85-125	0.071	+0.038/-0.038	± 0.029	± 0.017	+0.018/-0.017	+0.0018/-0.0022
125-165	0.027	+0.020/-0.019	± 0.016	± 0.009	+0.007/-0.007	+0.0003/-0.0006
165-∞	0.028	+0.027/-0.027	± 0.023	± 0.012	+0.008/-0.007	+0.0002/-0.0006