Final Results of the MEG Experiment

and Status of MEG II

Toshinori MORI The University of Tokyo

#### $\mu^+ \rightarrow e^+ \gamma$ and $\nu$ oscillations (Nobel prize 2015)



#### neutrinos are too light

# Very light neutrino masses may imply $\mu^+ \rightarrow e^+\gamma$



#### See-saw mechanism

• Ultra-heavy majorana righthanded neutrino  $M_N = 10^{-10^{-12}} \text{ GeV}$ 

#### \* GUT?

 Leptogenesis?
 μ<sup>+</sup>→e<sup>+</sup>γ ~10<sup>-12</sup> thru RGE evolution

even if no flavor violation

 $m_f$  = mass of charged fermions



#### SUSY Grand Unification LFV grows through RGE to ~10-12

# Before MEG started:



# Muon cLFV Sensitivity Comparisons





### 1/390 : 1/170

### $BR = 4 \times 10^{-14} : 1 \times 10^{-16} : 2 \times 10^{-16}$

~MEG II goal

for AI target

#### **Recent Progress in Particle Physics**

- Discovery of Higgs
  - Higgs is light (125GeV)
- Higgs is likely to be elementary
  - Good prospects for GUT/seesaw
- **Discovery of the third neutrino oscillation**  $\theta_{13}$ 
  - Mixing is large  $(\theta_{13} \sim 9 \text{deg})$ 
    - Larger BR( $\mu \rightarrow e\gamma$ ) expected

Expectations even higher now for  $\mu \rightarrow e\gamma$ 



# TeV scale physics strongly constrained by LHC?



 Particles only electroweakly interacting are NOT strongly constrained yet and thus may be lighter!

not necessarily SUSY

 $\mu \rightarrow e\gamma$  is Complementary & Synergetic to LHC



# Background for $\mu^+ \rightarrow e^+ \gamma$



Accidental BG are dominant for this high rate experiment

#### Dominant Background Is Accidental



must manage high rate e<sup>+</sup>

good γ resolution is most important !

Gradient Magnetic Field Spectrometer Liquid Xenon Scintillation Detector

#### 1.4MW Proton Cyclotron at PSI

The Unique Facility for  $\mu \rightarrow e\gamma$  Search

Provides world's most powerful DC muon beam > 10<sup>8</sup>/sec

#### **COBRA spectrometer with gradient B-field** (COnstant Bending RAdius)





Low energy positrons quickly swept out

#### Constant bending radius independent of emission angles

#### "COBRA Concept" to manage high rate positrons



### 2.7t Liquid Xenon Photon Detector

#### **High resolution detector**

- Scintillation light from 900 liter LXe is detected by 846 PMTs mounted on all surfaces and submerged in LXe
- Fast response & high light yield provide good resolutions of energy, time, & position
- Gas/liquid circulation system to purify xenon
  - Ultimate uniformity & purity unachievable by crystal calorimeter



# The Final MEG Data Analysis





# Issues & Improvements in $\mu^+ \rightarrow e^+\gamma$ Analysis

- Alignment of Muon Stopping Target
- Alignment of LXe Detector
- Rejection of Annihilation-of-Flight (AIF) Gamma-rays
- Recovery of Missing First Turns

### Target Alignment

- Position & shape of the target are surveyed by
  - "hole" reconstruction
  - optical survey between the runs
- Non-planar deformation seems to have developed during the runs
- Effects not negligible for the 2012-13 runs
  - ~0.3 mm uncertainty
  - treated as nuisance parameters in likelihood analysis
- A few different target materials being studied for MEG II

~13% degradation in sensitivity







deformation measured by 3D scanner

# AIF Gamma-rays





Gamma-rays from e+ annihilation inside DC were identified & rejected

overall BG rejection 1.9% signal inefficiency 1.1%

# Missing 1st turn of e<sup>+</sup>

- Possibility to miss the first turn in a multiple turn event
- Algorithm revised to recover missing first turn
  - Signal efficiency improved by ~4%





# Blind & Likelihood Analysis

(Ey, Ee, Tey,  $\theta ey$ ,  $\phi ey$ )  $\rightarrow$  signal, acc BG, RD BG

#### **Blind analysis**

 Optimization of analysis and BG study are done in sidebands





 $ev\overline{v}\gamma$ 

#### PDFs from data

- accidental BG: side bands
- signal: measured resolution
- radiative BG: theory + resolution

# Maximum Likelihood Fit

- Fully frequentist approach (Feldman & Cousins) with profile likelihood ratio ordering
  - Event-by-event PDFs for both e<sup>+</sup> & photons
  - Target alignment (t), N<sub>RMD</sub> and N<sub>ACC</sub> are treated as nuisance parameters and are profiled in the fit.

$$\mathcal{L}\left(N_{\text{sig}}, N_{\text{RMD}}, N_{\text{ACC}}, \mathbf{t}\right) = \frac{e^{-N}}{N_{\text{obs}}!} C(N_{\text{RMD}}, N_{\text{ACC}}, \mathbf{t}) \times \prod_{i=1}^{N_{\text{obs}}} \left(N_{\text{sig}}S(\mathbf{x}_{i}, \mathbf{t}) + N_{\text{RMD}}R(\mathbf{x}_{i}) + N_{\text{ACC}}A(\mathbf{x}_{i})\right)$$

 $x_i = (E\gamma, Ee, Te\gamma, \theta e\gamma, \phi e\gamma)$ 



N<sub>RMD</sub> evaluated from outside the blinded box

# Sensitivity

- average 90% CL Upper Limit w/ null-signal hypothesis
- Comparison w/ last publication of 2009-2011 data ~ Fine
- Checked by side-band data fits
- ~5.3×10<sup>-13</sup> for all data
  (~8×10<sup>-13</sup> for 2009-2011 data)





# The Blinded Box was opened in December, 2015



### 4D Event Distribution



signal contours of 1, 1.64,  $2\sigma$  are shown

## The Five Observables & Rsig



The best fitted likelihood function is shown. "Signal" in arbitrary scales.  $R_{sig} = log_{10}(S / (f_RR + f_AA))$ , where S=signal, R=radiative, A=accidental

# $BR(\mu \rightarrow e\gamma) < 4.2 \times 10^{-13}$ @90%CL

| Dataset               | 2009-11 | 2012-13 | All  | negative log likelihood                                                                    |
|-----------------------|---------|---------|------|--------------------------------------------------------------------------------------------|
| Best Fit              | -1.3    | -5.5    | -2.2 | 3                                                                                          |
| 90% CL<br>Upper Limit | 6.1     | 7.9     | 4.2  |                                                                                            |
| Sensitivity           | 8.0     | 8.2     | 5.3  | $0 \frac{-10}{-10} \frac{-5}{-5} \frac{0}{0} \frac{5}{5} \frac{10}{10}$<br>Branching Ratio |

 Best fitted Branching Ratios and 90% C.L. Upper limits (in 10<sup>-13</sup>)

# Final MEG Result:



#### This is not the end !

### Status of the Upgrade Experiment MEG II

# MEG II Experiment ~4×10<sup>-14</sup> sensitivity



#### Upgraded LXe Photon Detector

improvements in energy & position resolutions by uniform precision 3D-imaging



All 4200 VUV-sensitive 12x12mm<sup>2</sup> SiPM (MPPC) were produced and tested

MEG II Timing Counter (half of downstream TC) installed & tested through full chain of trigger & DAQ electronics w/ Michel decays



## Drift Chamber

- Construction going on: wiring & assembly
- Expected to be delivered to PSI this fall for final tests toward the end of the year

### Radiative Decay Counter



~28% sensitivity improvement by tagging gamma-rays from radiative decays



#### xpectation:



# ...followed by many others



# ...followed by many others



# Summary

- No  $\mu \rightarrow e\gamma$  event has been found yet.
- ~30× more stringent constraint than the previous experiment on possible new physics: BR(μ→eγ) < 4.2×10<sup>-13</sup> @90% C.L.
- Preparation for MEG II well underway: expected to start in 2017 with 10× higher sensitivity ~4×10<sup>-14</sup>
- MEG II continues to lead charged lepton flavor violation searches in the coming years

The final result will be submitted to arXiv shortly

Also check our recent other publications: "muon polarization", arXiv/1510.04743 (submitted to EPJC) "radiative decay", EPJC 76(3), 108 pp.1-8

## backup slides

### a caveat !



Some models have "four-fermion" tree terms which strongly enhance  $\mu N \to e N \qquad \mu \to 3e$ 

#### Absolute y Energy Calibration



LH<sub>2</sub> target

to tag the other photon



• Gamma ray energy

- Signal PDF from the CEX calibration data
- Accidental PDF from the side bands
- Scale & resolutions verified by radiative decay spectrum
- systematic uncertainty on energy scale: 0.3%

### Monitor E<sub>y</sub> during Run



- sub-MeV proton beam from a dedicated Cockcroft-Walton accelerator are bombarded on  $Li_{2}B_{4}O_{7}$  target.
- 17.67 MeV from <sup>7</sup>Li
- 2 coincident photons (4.4, 11.6) MeV from <sup>11</sup>B: synchronization of LXe and TC
- Short runs 2-3 times a week



remotely extendable beam pipe of CW proton beam (downstream of muon beam line)

17.67 MeV Li peak



# Positron - Photon Timing



- Positron time measured by TC and corrected by ToF (DC trajectory)
- LXe time corrected by ToF to the conversion point
- RMD peak in a normal physics run corrected by small energy dependence; stable < 20ps</li>

### Pile-up Photon Removal



- Good position/timing resolutions enable to remove pile-up photons
- All the PMTs are read out by waveform digitizers (DRS)
- Events are not thrown away

#### Target Alignment by "Hole" Reconstruction





- The holes of the target are reconstructed by e<sup>+</sup> tracks.
- Displacement of the target manifests itself in dependence of the reconstructed hole
   position on e<sup>+</sup> angles.

# Normalization

- Michel events & radiative decay events (RMD)
   were used to
   count total # of
   muon decays
   measured
- Some of the systematics on acceptance cancelled

