Recent Results from NOvA

Les Rencontres de Physique de la Vallée d'Aoste

Craig Group

U. Virginia On behalf of the NOvA Collabortion March 2016

Introduction

Neutrino Oscillation (2-flavor case)

If the neutrino mass eigenstate isn't equal to its flavor (weak interaction) eigenstate then v_e and v_u can be written as linear combinations of v_1 and v_2 :

$$\begin{vmatrix} v_e \\ v_\mu \end{vmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

By applying the time-dependent Schrödinger equation and assuming relativistic neutrinos the transition probability is:

$$P(v_{\mu} \rightarrow v_{e}) \simeq \sin^{2}(2\theta) \sin^{2}(\frac{\Delta m^{2}L}{4E})$$

So, neutrino oscillation probabilities depend on the mixing angle, and oscillate as a function of L/E. Note that we know neutrinos have mass based on oscillation measurements! 3/7/16, C. Group

La Thuile 2016 - Recent Results from NOvA

- Mass hierarchy
- Nature of $v_3 v_e$ θ_{23} octant v_{μ}

 \mathbf{v}_{τ}

- Is CP violated?
- Is there more to this picture?

- Mass hierarchy
- Nature of v₃ θ₂₃ octant
- Is CP violated?
- Is there more to this picture?

- Mass hierarchy
- Nature of v₃ θ₂₃ octant
- Is CP violated?
- Is there more to this picture?

Are neutrino and antineutrino oscillation parameters the same?

If neutrino interactions violate CP, then neutrinos could have played an important role in Leptogenesis.

- Mass hierarchy
- Nature of v₃ θ₂₃ octant
- Is CP violated?
- Is there more to this picture?

Maybe the simple 3-flavor model is incomplete.

Oscillation (3 flavors)

$$\begin{array}{l} \left\langle \overline{\nu}_{e} \right\rangle \approx \underline{\sin^{2}(2\theta_{13})\sin^{2}(\theta_{23})}f^{\pm}(L,E,\Delta m_{31}^{2}) \\ + \left\{ \cos\delta_{\mathrm{CP}}\cos\frac{\Delta m_{31}^{2}L}{4E} + \underline{\sin\delta_{\mathrm{CP}}\sin\frac{\Delta m_{31}^{2}L}{4E}} \right\} \end{array}$$

± neutrino mode± anti-neutrino mode

 $P(\nu_{\mu} - P(\bar{\nu}_{\mu} - \bar{\nu}_{\mu}))$

$$\times 2\frac{\Delta m_{21}^2}{\Delta m_{31}^2}\sin(\theta_{13})g^{\pm}(L, E, \Delta m_{31}^2, \theta_{12}, \theta_{23})$$

- The NOvA baseline (L = 810 km) and neutrino beam energy (E = 2 GeV) place our detector at the first $v_{\mu} \rightarrow v_{e}$ oscillation peak.
- sin²20₁₃: the leading term in this equation has already been measured and it is large!
- $\sin^2\theta_{23}$: we get information about the ϑ_{23} octant from the leading term.
- δ_{CP} : we have sensitivity to the CP-violating phase angle.
- mass hierarchy: depending on the sign of Δm²₃₁ (~ Δm²₃₂), the oscillation probability is either enhanced or suppressed.

Extracting Oscillation Parameters

Bottom line:

 $P(\nu_{\mu} \rightarrow \nu_{e}) = f(\theta_{13}, \theta_{23}, \delta_{\text{CP}}, \text{mass hierarchy}, ...)$ Oscillation rates can tell us about the properties of neutrinos.

- The NOvA baseline (L = 810 km) and neutrino beam energy (E = 2 GeV) place our detector at the first v_µ → v_e oscillation peak.
- $\sin^2 2\theta_{13}$: the leading term in this equation has already been measured and it is large!
- $\sin^2\theta_{23}$: we can glean information about the ϑ_{23} octant from the leading term.
- δ_{CP} : using the measured value of ϑ_{13} , we can determine the CP-violating phase angle.
- **mass hierarchy**: depending on the sign of $\Delta m_{31}^2 \sim \Delta m_{32}^2$, the oscillation probability is either enhanced or suppressed. This difference can be determined by comparing neutrino running with anti-neutrino running.

By counting events of each flavor at the near and far detector, NO ν A measures oscillations probabilities in four channels:

$$\begin{array}{cccc} \nu_{\mu} \rightarrow \nu_{e} & \& & \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} & \rightarrow \mathrm{v_{e} \ appearance} \\ \nu_{\mu} \rightarrow \nu_{\mu} & \& & \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} & \rightarrow \mathrm{v_{\mu} \ disappearance} \end{array}$$

(Note; Precision v_{μ} disappearance measurements constrain θ_{23})

Apparatus

The NOvA Experiment

• **ΝΟνΑ**:

- NuMI: Neutrinos at the Main Injector (v_{μ})
- Off-Axis: monoenergetic beam (~ 2 GeV)
- $-\nu_{\rm e}$ Appearance

NOvA Experiment

Ash River, MN 810 km from Fermilab

MINOS Far Detector

Far detector on the surface

Wisconsin

NOvA Far Detector

Milwaukee

NuMI beam at up to 700 kW and chigan Near detector underground

Fermilab Accelerator Complex 2012

Chicago

© 2007 Europa Technologies Image © 2007 TerraMetrics image © 2007 NASA

reaming IIIIIIIII 100%

Eve alt EAE 96 km

NuMI Beam

Beam is currently operating at ~500 kW with record of 570 kW Scaling to full 14 kton-equivalent exposure, 2.74×10^{20} POT.

NOvA Detectors:

- Fine-grained, low-*Z*, highlyactive tracking calorimeters
- 11 M liters of scintillator
- λ -shifting fiber and APDs

Far Detector 14 kton, 896 layers, 344,000 Channels

~60 m

Alternating planes (x view and y view)

Near Detector 0.3 kton, 206 layers, 18,000 Channels

La Thuile 2016 - Recent Results from NOvA

3/7/16, C. Group

15.6 m

Reconstruction and Calibration

Event Topologies

lm

NOvA Monte Carlo

Data Event Display of Far Detector

Time Zoom on NuMI Beam Pulse

Close-Up of Neutrino Interaction

Neutrinos "pile up" in the Near Detector!

Calibration

Use cosmic muons to determine channel-to-channel and attenuation calibrations.
Use stopping muons as a standard candle for setting the absolute energy

Multiple cross-checks:

- cosmic muon dE/dx
- beam muon dE/dx
- Michel e- spectrum
- π_0 mass
- hadronic shower energy per hit

All samples agree within 5%.

Results

Near Detector Cross Sections

Electron-neutrino inclusive cross-section

- Important for understanding electron neutrino interactions in current and future long-baseline experiments
- ~ 50% higher than the GENIE prediction, but agree to about 1.5 sigma
- Note that data points are highly correlated.
- Presented at Fermilab Wine and Cheese last week.

Data

NOvA Preliminary

Coherent π^0 production.

- Single forward-going pion in the final state, no vertex activity.
- Background to v_e analyses

Both results in process of publication. Many other Near Detector analyses in process. Results from NOvA 25

Far Detector Neutrino Prediction

- We use a data-driven technique to extrapolate the neutrino events in the near detector to the far detector:
 - 1. Estimate true energy distribution of near detector events.
 - Multiply by expected far/near event ratio and oscillation 2. probability.
 - 3. Convert far detector true energy into reconstructed energy.

First results: $v_{\mu} \rightarrow v_{e}$ Appearance

arXiv:1601.05022

- Decided to implement two independent particle IDs: "LID" and "LEM". LID is the primary. "Cut and count" between 1.5 and 2.7 GeV.
- These select 6 (LID) and 11 (LEM) events. All 6 of the LID events are selected by LEM. Expected background is 1 event for each.
- LID and LEM have 62% overlap, determined from simulation and checked in NOvA near detector. The P-value for selecting the combination (11:6/5/0) is 7.8%.
- Top plot shows the ND energy spectrum of e-like candidates. Bottom plot shows the energy spectrum of the 11 events. LID are in black, LEM in dashed.

La Thuile 2016 - Recent Result

First results: $v_{\mu} \rightarrow v_{e}$ Appearance

First results: $v_{\mu} \rightarrow v_{e}$ Appearance

Muon Neutrino Disappearance - Results

Exotics

Exotic Triggers at NOvA

- Upward-going muon Atmospheric physics and search for neutrinos produced from dark matter annihilation.
- High-energy (large dE/dx) Highly-ionizing particles, monopoles, ..
- Slow tracks (beta<<1) slow monopoles, other slow particles
- High-energy trigger cosmic ray air showers, high-energy cosmic rays
- SNEWS Super Nova Early Warning System

Outlook and Conclusions

NOvA Outlook

- New oscillation results expected for Neutrino 2016 (July'16) with twice as much data.
- Both near and far detector are running well.
- Recent raised gain on the far detector -- tracking efficiency up from 85% to 92% at far end of 15.5 m long cells.
- Should see some 700 kW running this year. Sustained running at 700 kW depends on work to be done during summer'16 shutdown.
- Plan to run in neutrino mode until at least this summer.

NOvA Summary

- NOvA will help answer important questions in neutrino physics (Mass hierarchy / θ₂₃ and its octant / CP violation / BSM)
- With less than 8% of NOvA's design exposure:
 - We see the unambiguous v_{μ} disappearance signature with competitive oscillation measurements.
 - We see v_e appearance signal at >3 σ .
- First analyses:
 - $v_{\mu} \rightarrow v_{\mu}$: <u>arXiv:1601.05037</u>. Coming soon to PRDRC
 - $v_{\mu} \rightarrow v_{e}$: <u>arXiv:1601.05022</u>. Coming soon to PRL
 - Cross-section program underway
- Expect an update in July at Neutrino 2016 with twice the data sample

Thank you to the organizers!

The NOvA Collaboration

Over 200 scientists, students and engineers from 38 institutions and 7 countries

LID and LEM

NOvA Preliminary

LID

- Calculates transverse and longitudinal dE/dx likelihoods for various particle hypotheses.
- These, plus topological features, are fed into a standard neural network

• LEM

- Finds best matches to a library of simulated events.
- Properties of the best matches are fed into a decision tree.

Good data/MC agreement over the full PID range for both selectors.

Signal and Background Predictions

- Background prediction for both selectors is ~1 event with 10% systematic uncertainty.
- Selected backgrounds are dominated by beam v_e and neutral current events.
 - Beam v_e events are irreducible can only be exclude if they are outside our chosen energy window.
 - Most selected neutral current events contain an energetic π⁰.
- Signal prediction depends on chosen oscillation parameters.
- Both selectors have ~same performance. Prior to unblinding, decided to show results using both selectors, but use the more traditional LID as our primary selector.

		Total Bkg	Beam	V _e	NC		CC	$\nu_{_{\tau}} CC$		Cosmic
	LID	0.94 ± 0.09	0.47		0.36	0.05		0.02		0.06
	LEM	1.00 ± 0.11	0.46		0.40	0.07		0.02		0.06
Signal prediction:							NH, δ _{CP} = 3π/2		IH, $\delta_{CP} = \pi/2$	
the outer range of possible				LID			5.62 ± 0.72		2.24 ± 0.29	
results.			LEM			5.91 ± 0.59		2.34 ± 0.23		

Far Detector Status

• Using the previous equations, we can calculate the neutrino and anti-neutrino appearance probabilities.

• Using the previous equations, we can calculate the neutrino and anti-neutrino appearance probabilities.

• Here is an example measurement NOvA might make.

• Using the previous equations, we can calculate the neutrino and anti-neutrino appearance probabilities.

- Here is an example measurement NOvA might make.
- Ambiguities exist for some regions of parameter space

Cosmic Ray Air Showers (triggered)

La Thuile 2016 - Recent Results from NOvA

High Energy (triggered)

