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Multi messenger astronomy
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Charged Cosmic Rays with Space Experiments

e Cosmic Rays with space experiments probe the local galaxy
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The physics of charged cosmic rays

e Understand the mechanisms of production and propagation
of CR in the galaxy: interesting per se and to understand
astrophysical background to exotic sources

e Dark Matter (DM) in the WIMP regime: DM annihilation in
charged (anti)particles of energy 1-1000 GeV > DM masses
of tens of GeV to few TeV (depending on abudance, decay
channel, couplings, ...).

e Anti Matter.(AM) direct search through anti-Helium-4
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Why Cosmic Rays in Space Experiments

+ Sensitive to “primary” CR component (i.e. before interacting
with earth atmosphere)

+ A higher precision on energy and on chemical composition can
be reached, wrt ground exp.

4+ With magnet = sensitivity to anti-particles

4+ Compared to balloons: long period of continuos data taking
— increased statistics, but also a better control of systematics

— Limited mass
— Limited geometrical acceptance
— Large cost
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Magnetic Spectrometers vs Calorimeters

sible ] il ¢ magnetic spectrometers: access
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AMSO02 magnetic spectrometer:
TRD g particle detector in Space Tor

Identify e+, e-

e

AMSO02 characteristic:
redundancy
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AMSO02 has access to many channels

e positron fraction and anisotropy Q\“?
e positron and electron flux Q,\}‘"
e total electron+positron flux Qo
e proton and helium flux
e anti-proton to proton ratio QA sz*
e anti-proton flux v?y \Gf\
. QY &
e B/Cratio & ,&b
e B, Cfluxes \$.‘,Q0°
e Liand O fluxes \&
e other elements (Be, Be/B,...) and isotopes (*He/*He) &
e deuterons vg}"
e anti-deuterons and anti-helium (*He and “He) ‘o?§
* Heavierions, .... N

&
QO
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Main sources of systematics

 No time to discuss analyses = 3 relevant issues:

1. electrons, positrons. ep-separation = discrimination between
em particles and the much more abundant hadronic (mostly
proton) component

2. anti-particles. Charge Confusion = probability of measuring

the wrong sign of the charge ("negative protons", "positive
electrons”, ...)

3. nuclei. Z identification and fragmentation inside the detector
(Z>2Z-1, Z-2, ...) whose probability increases with Z:

e He = 14%
e C =40%
e Fe =70%

(N.B.: ECAL not included in fragmentation probability)
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ep-separation

Three detectors to separate e* from hadrons
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TRD

to identify e*

ECAL measures E
Tracker measures p

eL: E=p
proton: E<p

ECAL

| (shower shape)
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Charge confusion

e 2 sources of Charge Confusion (CC):

— Rigidity resolution: MDR (Maximum Detectable Rigidity) =
Rigidity at which the error on Curvature (k=1/R) is 100%
(p=1.8 TeV for protons, p=3.3 TeV for Helium).

e This is a "hard wall", but its effect on CC decreases
rapidly as you move down in Rigidity (gaussian
distribution in k)

— Multiple Scattering: much more important at all rigidities

 normally it has additional features: extra secondary hits
in Tracker, higher activity in TOF counters due to
emitted radiation, ...

e possible to build a classifier which separates anti-
protons from negative protons, or positrons from
positive electrons
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Separating pbar from p and e background

e (CC-separation and ep-separation estimators (based on BDT) are
built; a 2D plane is formed on which cuts are applied

Below is an example of each estimator after cutting on the other

e Good separation, but residual proton background is non negligible
8 40F — %) :
| o e | v
s De—p S 20 ld.f. =39.6/27 W5
w i p—p (T LJe—p
A p—p
= 30F i - — Fit
: Data 15 Data
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20 | i 10
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CC separation estimator ep separation estimator
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Entries

Cosmic-Rays Composition with AMS
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Nuclei identification for light elements
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Fragmentation: example with Lithium

S,
e Use Layer 1 to determine original charge \f’o
e Exploit redundancy to observe fragmentation / y
e (similar effects in Boron analysis)
) G DL AL BLELELELE BLELELELE BRI BUELEL L B
< ; \
S : [12 GV, 100 GV] %\
(1] : 5\
[

l.

1

‘w 09“ J
9 10

La Thuile 2016 I\/Iarco Incagh INFN Plsa 15

Charge in L1

[} [}
* Selection *
. region |
: ]

C%LI |




La Thuile 2016

Results

Marco Incagli - INFN Pisa

16



p and He fluxes

proton and Helium fluxes show 2 puzzling features: a (soft)

AMS proton flux

.......
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a0 AMS Helium: Flux
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break at similar rigidities (~200-300 GeV) and a spectral index
which differs by ~0.1 in a large energy range
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Lithium and B/C 7
7))
E
However a similar break at a <
similiar Rigidity is observed O,
also in Li, a secondary species %
X
Maybe a component of x
secondaries and primaries are T
accelerated together inside
SNR shocks? .
A similar break is expected also %
in Carbon, but not necessarely :%
at the same Rigidity 9
B/C ratio smooth = need to 8

look at single fluxes
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Break in the spectrum, p/He and e*

The p/He spetrum is featureless ®© e
. bY4 5'5? ‘# 2
Indicate the same (unknown) 3 E D /Py, =CR
. = E %
mechanism works for p, Heand g 5[ ", — Single power law fit
possibly higher charges % . R > 25 GV)
4.5
What about e? ..g k
. . _ e [ :
Break not evident in e o 4 ‘
- Break in I
Not enough statistics in e+ " >
& 3.5 p,He | i 1
Concave spectra with additional ‘10 = 102 — 1‘03
component at ~¥30 GeV ——r—ry ey e
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The Electron Flux and the Positron Flux
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Energy losses of electrons:

e acutoff is expected in e*
spectra due to losses in
propagation

e the cutoff shape at High

Energies will tell about the

distance to the sources
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What about the positron fraction?

 As observed by previous experiments, mostly by Pamela, the
fraction of positrons starts to increase above ~8GeV
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Is the rise of the positron fraction a hint of DM?

 Above 200GeV there is a flattening in the spectrum

e Isita hint of Dark Matter?What happens above 500 GeV?
(results based on 30 months of data taking from 19/05/11 to 26/11/13)

* ¢ 0.3
o

® AMS-02
= i O PAMELA
O B A Fermi
S | 7 HEAT
P i j v CAPRICES4
= .
© 0.2 Flattening above 200 GeV
:l: =
8 L 15% \ : + l l
o 1 1) } ; I | %
A § b ¢ $ e
0.1 V Q’ Relative error
? on last point:
P Y Ogiat = 19%
d 0
. " Rise above a few GeV Ogyst = 13%
0 PR U TR VR (N W N W NN (N WY TN SN N NN U SN YN U S S T S
100 200 300 400 500
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Dark Matter model with intermediate state

M.Cirelli, M.Kadastik, M.Raidal and A.Strumia, Nucl.Phys. B873 (2013) 530
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But the excess can be due to standard astrophysics

Possible explanations:

1. PULSARS: e* pairs are produced by
the interaction of energetic photons
with the strong magnetic field of the
neutron star. No pp pairs!

2. RE-ACCELERATION of SECONDARIES: secondaries are produced inside the
shock-wave of a SNR and boosted to higher energies. All particles (e, p, ...).

Acceleration in SNR Propagation in Galaxy
accelerated
secondary et new
- < secondary e (v,~) component

primary protons

iffusive Shock Accele

K4

- = % secondary eT conventional
Component

primary e~

Ahlers, Mertsch & Sarkar,PRD80:123017,2009



p/p ratio
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What about anti-protons?
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* no rise observed, as in e+/e- ratio, but the spectrum is flatter

than expected

e precise measurement up to R=450 GeV; hard to go above.
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Example of a fit with a model
optimized on Pamela data

antiproton/proton
o) -
= — t fit
R10°L - AMS-02prel. T best fif LIS
- 1Selection
L ssesessge ¢ ¢ +
1074 = :
= Secagndary production
B (optimized for PAMELA)
10°° =
E o antiproton/proton —
10°° =
10—7 | J"/I' | III| | | | III| | 11 III| | | |
10! 1 10 10°
Dissertation / PhD Thesis IEKP-KA/2014-20 ,
Simon Kunz (2014) Marco Incagli - INFN Pisa 0w 12;: T E——
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but if models are tuned on AMS ...

¢ PAMELA 2012
¢ AMS.02 2015
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[ e Uncertainty from: s Cross-sections
Propagation
s  Primary slopes
Solar modulation
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. oo e 3 possible
models:
always some
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) I B evident effect
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(a) G.Giesen, M.Boudaud, Y.Génolini,

1074

AMS-02 Bip data
......... B/C best fit in sample
- = p/p best fit in sample

I propagation uncertainties
nuclear uncertainties

y - .. .lll
1 10’ 10?

T [GeVin]

La Thuile 2016

W WSS i | BT W . 1 AL A

V.Poulin, M.Cirelli, P.Salatiand, and
P.D.Serpico, JCAP1509 (2015) 09, 023
[arXiv:1504.04276 [astro-ph.HE]].

(b) C.Evoli, D.Gaggero and D.Grasso,
arXiv:1504.05175 [astro-ph.HE].

E (c) R.Kappl, A.Reinertand, and

M.W.Winkler, arXiv:1506.04145

3 [astro-ph.HE].
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How can we distinguish among many models?

e Only one way: make precision
measurements in many channels!

e Example: comparison of B/C and
positron fraction data with one

model which includes re-acceleration
(Mertsch et al, PR D90 (2014) )

Models will have to explain: )
m

— rise and flattening of positron fraction

1071 ¢

— break at ~300 GeV in H, He, Li

break at ~30 GeV in et
flatness of pbar/p

constant slope in p/He and B/C
absolute fluxes of many nuclei
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Additional example: slide from S. Sarkar talk @ Cern - April, 2015

+ AMS-02
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Is there still room for Wimp Dark Matter?

Definitely yes; we have the duty of digging well into our data
to look for DM signatures as a magnetic spectrometer will not
be soon launched in Space!

Calorimetric experiments (CALET, DAMPE and, in a short time
frame, ISSCREAM) will provide additional information to
constraint the generation/propagation of standard Cosmic
Rays

What about Antimatter?

The search for anti-Helium will proceed in parallel with the
anti-deuteron analysis

Both anti-Helium 3 (possible background or DM signal) and
anti-Helium 4 (anti-stars) will be stuied



Conclusions

 With AMSO02 (partly also with Pamela) a precision era
of Charged Cosmic Ray measurements has started

e WIMP dark matter is not ruled out, but to find it
many subtle effects of CR generation and
propagation must be kept under control

e Additional information on CR from calorimetric
experiments (CALET, DAMPE, ISSCREAM)

e AMS will operate for few more years and it will be
the only space experiment with a magnet for long
time =2 let's get the most out of it!

La Thuile 2016 Marco Incagli - INFN Pisa 31



