Status of the GERDA experiment

Eduardo Medinaceli on behalf of the GERDA collaboration INFN & Univ. of Padova

Les Rencontres de Physique de la Valle D'Aoste La Thuile 2016, March 7 – 12, 2016

OUTLINE

- how we can test neutrino nature:
 - $\circ \beta\beta$ decay types, signal
- the GERDA experiment:
 - o collaboration, site, experimental set-up
- Phase-I results:
 - \circ background model
 - $\circ 2\nu\beta\beta$ decay
 - $\circ 0\nu\beta\beta$ decay signal
- Phase-II status:
 - o ⁷⁶Ge detectors deploiment
 - \circ LAr veto
 - o first commissioning results
- summary

Neutrino physics

- $2\nu\beta\beta$ is a 2nd order weak decay
- is there a Lepton number violation?
- extension to the Standard Model?
- are Majorana ($\nu \equiv \overline{\nu}$) or Dirac particles?
- is the mass hierarchy «normal» or «inverted»?
- which are their absolute masses?

• $\Delta L = 0$ • allowed in the SM

 $\circ T_{1/2} \sim 10^{(18 \div 24)} \, \mathrm{yr}$

GERDA

0νββ

 $\circ \quad \Delta L = 2$

- not allowed in the SM
- $\circ T_{1/2} > 10^{25} \text{ yr}$

 $(m_{2})^{2}$

(m.

mass hierarchy

$0\nu\beta\beta$ decay signal

GERDA (Germanium Detector Array) search for $0\nu\beta\beta$ decay of ⁷⁶Ge

- monochromatic line at ⁷⁶Ge $Q_{\beta\beta} = 2039 \ keV$
- extremelly low background required
- derive the half-life of the process

 $T_{1/2} > 10^{25}$ yr, *i.e.* << 0.1 event/(keV kg yr)

 $1/T_{1/2} = G(Q,Z) |M_{nucl}|^2 < m_{ee}^2$ Phase space

0vββ decay rate

ase space Matrix factor element

Matrix Effective Majorana element neutrino mass

The GERDA collaboration

GERDA site and concept design

- **site**: INFN's national lab. of Gran Sasso, Italy total overburden of 3500 m.w.e.
- concept design: array of bare Germanium (⁷⁶Ge) detectors inserted in liquid Argon (LAr)
- status: Phase-I (2011-2013) finished and published; Phase-II started on December 2015

GERDA experimental set-up

- Ge detectors, deployed from the lock system inside a clean room
- copper lined stainless steel cryostat (Phase-I), nylon (Phase-II) not shown
- 64 m³ LAr
- 590 m³ pure water (Cerenkov μ veto)
- plastic scintillator veto on the roof above the neck

Eur.Phys.J. C73 (2013)2330

HPGe detectors

- detector-grade germanium is a high purity material ⇒ low background enriched 86% in ⁷⁶Ge
- established detector technology
 ⇒ industrial support
- very good energy resolution \sim 0.1% at $Q_{\beta\beta}$
- high detector efficiency, source = detector
- Coaxial detectors (from HdM, IGEX)
- total mass 17 kg
- reprocessed by Canberra
- energy resolution (average FWHM) = 4.8 keV at $Q_{\beta\beta}$

new Phase II BEGe detectors

- total mass 20 kg
- better pulse shape discrimination capability and energy resolution (Phase I = 3.2 keV at $Q_{\beta\beta}$)

GERDA Phase-I

- data blinding at $Q_{\beta\beta}$ (2039) \pm 40 keV \equiv ROI
- November 2011 May 2013 with 88% duty cycle
- weekly ²²⁸Th calibration and constant monitoring with test pulser
- total exposure 21.6 kg yr (M = 14.6 kg Coaxial + 6.0 kg BEGe (3kg natural, 3 kg enriched))

data selection:

- quality unphysical events < 0.1 % misidentification
- muon veto 99.1% rejection efficiency
- o anti-coincidences (signal in more than one detector) negligible random coincidences
- o eliminate BiPo cascade of low energy ²¹⁴Bi and high energy α ²¹⁴Po ~ 50% efficiency

GERDA Phase-I background model

Eur.Phys. J C74 (2014) 2764

- background ~10X lower than previous Ge experiments
- main contributions:
 ²²⁸Th and ²²⁶Ra on holders,
 ⁴²Ar, and α on surface
- no line expected on ROI $(Q_{\beta\beta} = 2039 \pm 40 \text{ keV})$
- 2014 keV ²⁰⁸Tl and 2119 keV ²¹⁴Bi excluded
- expected events
 - \circ 8.6 minimum model
 - o 10.3 maximum model

GERDA spectrum Phase-I

GERDA

Phase-I: $2\nu\beta\beta$ results

- «golden dataset =17.9 kg yr Coaxial» used for the analysis
- binned Maximum Likelihood approach
- 2νββ half-life useful for understanding 0νββ (e.g. nuclear matrix element)

$$T_{1/2}^{2\nu\beta\beta} = (1.926 \pm 0.0095) \cdot 10^{21} \,\mathrm{yr}$$

Eur. Phys. J. C(2015) 75:416

Phase-I: Pulse Shape Discrimination

Coaxial: Artificial Neural Network

- SSE training with signal-like 208 TI (e^{-1} like signal)
- MSE training with background-like ²¹²Bi (γ like signal)
- cut adjusted for each detector to have 90⁺⁵/₋₉% survival probability on DEP

BEGe: A/E

- A = amplitude of current pulse
- E = energy
- high capability of distinguishing SSE from MSE, superficial events (p+(fast) and n+(low E))

JINST 4(2009) 10007; JINST 3(2011)3005;

EPJ C 73(2013)2583

GERDA

Phase-I: $0\nu\beta\beta$ results

- full chain (after calibration + fixed data selection + fixed analysis + PSD) → unblinding
- BI = 0.01 cts/(keV kg yr) after PSD (at ROI)

expected signal (w/PSD): (5.9 \pm 1.4) cts in \pm 2 σ expected bckg (w/PSD): (2.0 \pm 0.3) cts in \pm 2 σ

observed: 3.0 in $\pm 2\sigma$ (0 in 1σ)

$$T_{1/2}^{0\nu\beta\beta} > 2.1 \cdot 10^{25} \text{ yr } 90\% \text{ C. L.}$$

K.K claim (Phys.Lett. B 586 (2004)198) strongly disfavoured

GERDA on the way to Phase-II

Phase-II: LAr veto instrumentation

- fiber curtain (coated with WLS) coupled to SiPMs
- 3" PMTs on top and bottom of the array

LAr veto + PSD allows a strong background reduction at $Q_{\beta\beta}$

Phase-II: commissioning (pilot string assembly)

- spectrum of ²²⁸Th source
- 15 hours data 3 BEGe detectors
- 15 PMTs and 7 SiPM running
- Th background suppressed by x 100 including LAr data

Phase-II: commissioning (5 string assembly)

Phase-II: commissioning (5 string assembly)

 $2\nu\beta\beta$ decay spectra, using ~ 1 kg yr

energy resolution: FWHM at 2.6 MeV: BEGEs \sim 3 keV Coaxes \sim 4 keV

Summary

GERDA phase-I

- completed and still providing new results:
 - ✓ $0\nu\beta\beta$ of ⁷⁶Ge $T_{1/2}^{0\nu\beta\beta} > 2.1 \cdot 10^{25}$ yr 90% C. L.
 - ✓ $2\nu\beta\beta$ of ⁷⁶Ge $T_{1/2}^{2\nu\beta\beta} = (1.926 \pm 0.0095) \cdot 10^{21}$ yr
 - ✓ signal from previous claim disfavoured with 99% probability
 - ✓ more results not shown here (Majoron emission Eur.Phys. J. C75(2015)416, excited states of $2\nu\beta\beta$ J. Phys. G: Nucl. Part. Phys. 42(2015)115201

GERDA phase-II

- \checkmark commissioning finished
 - $\circ~$ LAr veto fully installed and operational
 - $\circ~$ all 40 HPGe detectors installed
 - \circ all diodes show stable behaviour (good energy resolution = Phase-I \sim 4 keV)
 - $\circ~$ during commissioning runs background reduction was improved
- phase-II started on December 2015, currently on-going (stay tuned for results ...)

spares

Improvement in the Energy Resolution

Zero Area Cusp filter

- filter optimized for each detector
- sinh-like cusp,

central flat top (maximize charge integration) total zero area (filter out 1/f noise) baseline sustraction (with parabolic filters)

- better low frequency rejection
- low-E tail reduced thanks to a better charge integration
- enegy resolution of Phase-I/II can be improved for both detectors

Phase I: emission of Majoron(s)

alternative processes to $0\nu\beta\beta$:

- e.g. Majoron emission $\beta\beta\chi \& \beta\beta\chi\chi$
 - many models
 - continuous spectra with shapes different to $2\nu\beta\beta$

- global fit of spectrum (coax &BEGe)
- for n=1 $T_{1/2}$ (0v $\beta\beta\chi$)= 4.2 x 10²³ yr (90% CL)
- improved by factor > 6

background data 2v88 0vββχ (n=1) (90% C.l.) model (background + 2νββ) 0vBBχ (n=2) (90% C.l.) 0vββχ (n=3) (90% C.l.) 68% interval 0vββχ (n=7) (90% C.I. events/(30 keV) golden data set (17.9 kg·yr) 0^3 102 10 events/(30 keV) BEGe data set (2.4 kg yr) 10^{2} 10 Eur. Phys. J. C 75 (2015) 416 1000 1500 2000 energy (keV)

P. Grabmavr

New Phase I results: 2vββ to excited states

- (2v)ββ of ⁷⁶Ge can occur into excited states of ⁷⁶Se
 - Not observed by now.
 Previous limits for T_{1/2} in the range of few 10²¹ yr.
 - Most probable: 0⁺₁ level at 1122 keV.
 Predictions 10²¹-10²⁴ yr for T_{1/2}
 - Benchmark for NME calculations

- Search for coincidence of ββ-decay in one detector and 560 keV γ-ray in another
- NO evidence found
- Limits improved by ~100
- For 0⁺₁ level:

$$T_{1/2} > 3.7 imes 10^{23}
m yr (90\%
m CL)$$

arXiv:1506.03120 (in print at J.Phys G)

Experimental Sensitivity

Sensitivity	$T_{1/2} \propto \epsilon \cdot rac{\epsilon}{A} \cdot \sqrt{rac{M \cdot T}{b \cdot \Delta E}}$	and $T_{1/2} \propto rac{1}{m_{etaeta}^2}$
-------------	---	---

ϵ	detection efficiency	$\gtrsim 85\%$
ε	enrichment fraction	high natural or enrichment
М	active target mass	increase mass
Т	measuring time	increase time
b	background rate	minimize &
	(cts/(keV kg yr))	select radio-pure material
ΔE	energy resolution	use high resolution spectroscopy

Requirements:

- high enrichment of isotope material
- M and T large
- very good energy resolution For GERDA $\Delta E < 0.2\%$
- very good detection efficiency because GERDA detector \equiv source, $\epsilon \sim 1$
- high-purity detectors \rightarrow low background For GERDA $b < 10^{-2}$ cts/(keV kg yr)
- higher M⁰^ν w.r.t. other isotopes

Additional tools to distinguish from background:

- Angular distribution
- Single electron spectrum
- Decay to excited states (gamma-rays)
- Identification of daughter nucleus

C.Macolino (GSSI)

Gemanium Pluse Shape Discrimination

Different energy deposition between gamma and electron Different recorded pulses

$0\nu\beta\beta$ decay signal perspectives

Eduardo Medinaceli - La Thuile 2016