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Ground Based GW Detectors
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O1 LIGO run
 Similar strain sensitivities for H1 and L1

 10-23/√Hz @ 100 Hz
 3-4 times better than in 2010 in 100 Hz –

300 Hz band

4

 O1: September 2015 –
January 2016
 Preceded by engineering run 

ER8, stable data taking from 
Sep 12

 Results on period Sep 12 – Oct 20
 Detectors maintained in same 

configuration
 Duty cycle: H1 70%, L1 55%,       

H1 + L1 48%
 16 days of coincident data
 Homogeneous data taking 
 In observation mode for ~30 min 

(H1), > 1 hour (L1) at time of 
GW150914



Environment vetting

 Monitoring of detectors physical 
environment performed with array 
of sensors
 Seismometers, accelerometers, 

microphones, magnetometers, radio 
receivers, weather sensors, AC-power 
line monitors, cosmic ray detector
 ~105 channels for each detector

 Used to characterize couplings and 
identify / veto transient disturbances

 Special attention to possible 
correlated sources of noise
 Global electromagnetic noise

 Environmental origin for GW150914 
ruled out
 Excess power in any auxiliary channel 

too small by factor > 17 to account 
for GW150914 amplitude
 Would not match signal morphology 

anyway
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Compact Binary Coalescence Search
 Targets signals from BNS, NS-BH, BBH sources
 Relies on accurate model of waveform to perform 

matched filtering
 Cross-correlates h(t) data with expected waveform
 h(t) calibrated to 10% amplitude and 10° in phase

 Intrinsic parameters – masses, (aligned) spins –
drive system dynamics and waveform evolution
 4-D space scanned with ~250,000 templates

 Extrinsic parameters impact signal arrival time, 
overall amplitude and phase
 Maximized over
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 Extracts maxima in signal-to-
noise ratio time series 𝜌𝜌(𝑡𝑡)

 Computes 𝜒𝜒𝑟𝑟2 to test 
consistency with template

 Extract triggers coincident in 
both detectors
 Time and parameters

 Apply data quality vetoes



CBC BBH search result
 Detection statistic



 �𝜌𝜌𝑐𝑐 = �𝜌𝜌𝐻𝐻12 + �𝜌𝜌𝐿𝐿𝐿2

 Significance
 GW150914 loudest event in search, �𝜌𝜌𝑐𝑐 = 23.6
 H1 and L1 triggers forming GW150914: 

largest �𝜌𝜌 in each detector
 False alarm rate measured from background 

estimated on data
 Analysis repeated on detector streams time-

shifted by 0.1 s ∼107 times, Tbckd = 608,000 yr
 Account for trial factors
 GW150914 louder than all background          
 lower limit on significance
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Coincidences between single 
detector triggers from GW150914 
and noise in other detector

Background excluding contribution from GW150914 
to gauge significance of other triggers



Evidence for BBH merger
 Over 0.2 s, frequency and amplitude 

increase from 35 Hz to fpeak = 150 Hz 
(∼ 8 cycles)
 GW-driven inspiral of two orbiting 

masses m1 and m2
 Inspiral evolution characterized by 

chirp mass



 Keplerian separation gets close to 
Schwarzschild radius 

 Very close and very compact objects
 BNS too light, NSBH would merge at lower 

frequencies
 Decay of waveform after peak 

consistent with damped oscillations 
of BH relaxing to final stationary Kerr 
configuration
 But SNR too low to claim observation 

of quasi normal modes 
8



Generic Transient Search

 Identifies coincident 
excess power in         
time-frequency 
representations of h(t)
 Frequency < 1 kHz
 Duration < a few seconds
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 Reconstructs signal waveforms consistent with common GW signal in 
both detectors using multi-detector maximum likelihood method

 Detection statistic



 Operates without a specific search model

 Signals divided into 3 search classes based on their time-frequency 
morphology
 C3 : Events with frequency increasing with time – CBC like

Ec: dimensionless coherent signal energy obtained by 
cross-correlating the two reconstructed waveforms
En: dimensionless residual noise energy after 
reconstructed signal is subtracted from data



Generic Transient Search Result

 GW150914 loudest event in 
C3 search class, ηc = 20

 Significance also measured 
from time slides
 Tbckd = 67,400 yr , trial factors

 FAR < 1 per 22,500 yr

 FAP < 2 10-6  > 4.6 σ
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Naked eye, CBC and Burst Views

 Waveform reconstructed from coherent signal in both detectors 
agrees with best-fit CBC waveform and NR, agrees with data
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35 – 350 Hz 
band-passed 
strain time series

Residual noise 
after waveform 
subtraction

Waveform 
reconstructions



Parameter Estimation
 Intrinsic parameters (8)

 Masses (2) + Spins (6)
 Extrinsic parameters (9)

 Location : luminosity distance, right ascension, declination (3)
 Orientation: inclination, polarization (2)
 Time and phase of coalescence (2)
 Eccentricity (2) – ignored 

 PE based on coherent analysis across detector network
 Bayesian framework: Computes likelihood of data given parameters, based on 

match between data and predicted waveform
 Explores full multidimensional parameter space with fine stochastic sampling

 PE relies on accurate waveform models
 Crucial progress over past decade to model all phases of BBH coalescence: 

inspiral, merger, ringdown
 Waveform models combine perturbative theory and numerical relativity
 Still missing: eccentricity, higher order gravitational modes, full spin generality

 EOBNR: Aligned spins (11 parameters)
 IMRPhenom: Aligned spins + one effective precession spin parameter (12 parameters)
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GW150914 Intrinsic Parameters
 Encoded in GW signal

 Inspiral
 Leading order: chirp mass
 Next to leading order: mass ratio, spin components 

// orbital angular momentum
 Higher orders: full spin DOF

 Additional spin effect
 If not // orbital angular momentum: orbital plane 

precession 
 Amplitude and phase modulation

 Merger and ringdown
 Primarily governed by final black hole mass and spin
 Masses and spins of binary fully determine mass and 

spin of final black hole in general relativity
 Masses
 Spins

 Weak/tight constraints on individual/final
 Radiated energy
 Peak luminosity 13



Astrophysical Implications 
 Relatively heavy stellar-mass black holes (> 25 M) exist in nature 
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 Binary black holes form in nature
 GW150914 does not allow to identify 

formation path
 From isolated binaries vs dynamical capture 

in dense star clusters
 Spin information may be able to tell in the future

 BBHs merge within age of Universe at detectable rate
 Inferred rate 2 – 400 Gpc-3 yr-1 consistent with higher 

end of rate predictions

 Implies weak massive-star 
winds

 Formation in environment 
with low metallicity



GW150914 Extrinsic Parameters
 A mix of things we can measure and 

things we can guess
 Amplitude depends on masses, distance, 

and geometrical factors
 Distance – inclination degeneracy
 Distant sources with favorable orientations 

are preferred


 Source location inferred primarily from 
time of flight                , amplitude and 
phase consistency
 Limited accuracy with two detector network
 Sky locations with good detector response 

are preferred
 2-D 90% credible region is 590 deg2

 3-D  uncertainty volume is 10-2 Gpc3

∼ 105 Milky Way equivalent galaxies 15



Electromagnetic follow-up

 LVC called for EM observers to join a 
follow-up program
 LIGO and Virgo share promptly

interesting triggers
 70 MoUs, 160 instruments covering 

full spectrum from radio to very high 
energy gamma-rays

 25 teams reported follow-up 
observation of GW150914

16



High-Energy Neutrino Follow-up

 Search for coincident high energy neutrino candidates in IceCube
and ANTARES data
 HEN ν expected in (unlikely) scenario of BH + accretion disk system
 Search window ± 500 s
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 No ν candidate in both temporal and 
spatial coincidence
 3 ν candidates in IceCube
 0 ν candidate in ANTARES
 Consistent with expected atmospheric 

background
 None of ν candidates directionally 

coincident with GW150914

 Derive direction dependent ν fluence upper limit
 Derive constraint on total energy emitted in ν by the source





Testing GR with GW150914 (I)

 Most relativistic binary pulsar known today 
 J0737-3039, orbital velocity 

 GW150914
 Strong field, non linear, high velocity regime 

 Loud-ish SNR allows some coarse tests
 Check residuals after subtraction of best-fit waveform 

are consistent with instrumental noise
 Waveform internal consistency check
 Evidence for deviation from General Relativity in 

waveform ?
 Bound on graviton mass
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Testing GR with GW150914 (II)
 No evidence for deviation from GR in waveform

 No evidence for dispersion in signal propagation




 More constraining than bounds from Solar System and binary 
pulsar observations

 Less constraining than model dependent bounds from large scale 
dynamics of galactic clusters and weak gravitational lensing 
observations 19



Outlook
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 xivxdi



Conclusion

 Second generation ground-based GW detectors 
came back online, with amazing sensitivity

 The LIGO detectors observed the beautifully clear 
and loud signal GW150914
 More O1 data still being analyzed

 This discovery opens up two new paths
 Testing gravitation in uncharted territory
 Gravitational wave astronomy

 Eagerly waiting for – and striving for – Advanced 
Virgo to join the data taking in 2016
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Data Quality

 Data quality figures of merit 
show clean data set, with 
homogeneous background 
on analyzed period, for both 
transient analyses

 Data quality vetoes remove 
times with identified 
instrumental or 
environmental issues, 
improve search background
 GW150914  >>  every 

background event even 
without DQ vetoes
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GW150914

GW150914



Rate of BBH mergers

 Previous rate estimates based on EM 
observations and population modelling
 R ∼ 0.1 – 300 Gpc-3 yr-1

 Previous LIGO-Virgo rate upper limits
 R < 140 Gpc-3 yr-1 for GW150914 parameters

 Astrophysical rate inference involves 
 Counting signals in experiment
 Estimating sensitivity to population of sources

 Depends on (hardly known) mass distribution
 Low statistics and variety of assumptions 

yield broad rate range
 R ∼ 2 – 400 Gpc-3 yr-1

 Can project expected number of highly 
significant events as a function of surveyed 
time-volume
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Expected BBH Stochastic Background
 GW150914 suggests population of 

BBH with relatively high mass
 Stochastic GW background from 

BBH could be higher than 
expected
 Incoherent superposition of all 

merging binaries in Universe
 Dominated by inspiral phase

 Estimated energy density

 Statistical uncertainty due to 
poorly constrained merger rate 
currently dominates model 
uncertainties

 Background potentially detectable 
by Advanced LIGO / Advanced 
Virgo at projected final sensitivity 24



Future Localization Prospects
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Face-on BNS 
@ 80 Mpc

Face-on BNS 
@ 160 Mpc

2016-17 2017-18

2019+ 2022+
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