A long time ago, at a laboratory far, far away...

Top Production at the Tevatron: The Antiproton Awakens

Ken Bloom for the CDF and D0 Collaborations 10 March 2016

- The Fermilab Tevatron collided protons and antiprotons at $\sqrt{s} = 1.96$ TeV
 - Quark-antiquark initial state (mostly)
- Two experiments recorded ~10 fb⁻¹ each, concluding operations in September 2011
- It is possible that such experiments will never be repeated
 - A unique dataset for unique measurements!
 - Today's topics: top-quark production rates, spin orientations, production asymmetries

Top production modes

Cross sections from NNLO theory tīt initial state fractions

σ (pb)	tī	tb	tqb	tW			TEV	LHC8	LHC13
TEV	7.08	1.04	2.08	0.30			050/	120/	109/
LHC8	234	5.55	87.2	22.2		qq	00%	1370	10%
LHC13	816	10.32	217	71.7		gg	15%	87%	90%
qq anni qq anni ^g 0000 gg fu gg fu	$\frac{t}{t}$	q s ch Teva some comp	annel atron ca e areas, olement qq init	t of the state	har oete	e in ides	b g b g	b tW cha	Innel w

tī production/decay primer

dilepton

00000

proton

B(t \rightarrow Wb) ~100%, final states characterized by two W decays:

Top Pair Branching Fractions

D0: Inclusive cross section

- 2x data as previous D0 measurement
- Heavy use of multivariate techniques
- Lepton plus jets channel:
 - Six subsamples based on lepton type and jet multiplicity
 - Each gets its own BDTG using ~20 kinematic variables plus b-tag MVA output for jets
- Dilepton channel:
 - Four subsamples: eµ+1 jet, eµ+≥2 jets, ee +≥2 jets, µµ+≥2 jets
 - b-tag MVA output of leading jet is used as discriminant
- Simultaneous template fits across all samples, using systematics as nuisance parameters
- $\sigma = 7.73 \pm 0.13$ (stat) ± 0.55 (syst) pb
 - Relative uncertainty 7.3%!
 - Dominant systematics are from modeling, especially hadronization

Single top production

- Combine CDF (I+jets and MET+jets) & D0 (I+jets) discriminants for s-channel production
- Include all systematic uncertainties and correlations
- First observation of s-channel single top,
 6.3 SD significance

Single top production

- No assumption of σ_s/σ_t value
- Agrees with SM, no indication of non-SM contributions
- Concludes the Tevatron singletop program!

D0: top polarization

- Top quarks produced in strong interaction are (almost) entirely unpolarized
 - A search for polarization is a search for new physics
- Polarization can be measured in the top rest frame through angular distributions of decay products *i* with respect to a given axis *n*:

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{i,\hat{n}}} = \frac{1}{2} (1 + P_{\hat{n}}\kappa_i \cos\theta_{i,\hat{n}})$$

Many axes to choose from

analyzing power, ~1 for leptons

- beam axis: direction of proton
- helicity axis: direction of parent top quark
- transverse axis: perpendicular to production plane (cross product of beam and helicity axes)
- D0 has new measurements of polarization, including the world's only measurement using the transverse axis

D0: top polarization

- Use I+3 jet and I+4 jet samples, perform kinematic reconstruction to get lepton angles
 - I+3 jet kinematic fitter developed for AFB analysis increases statistics
- Develop P=+1 and P=-1 templates, extract polarization from relative fractions
- Measured polarizations consistent with both SM and 0
- First-ever measurement of transverse polarization
- Polarization also measured in dilepton events (wait 8 slides)

D0 6417-CONF

0.6 0.8

W+iets

Multiiet

tr P=-1 tem

cosθ, (helicity)

(beam)

± cosθ.

AXIS	Measured polarization $T_{\hat{n}}$	SM prediction
Beam	$+0.070 \pm 0.055$	-0.002
Helicity	-0.102 ± 0.060	-0.004
Transverse	$+0.040 \pm 0.034$	+0.011

D0: spin correlation

- While tops are not produced polarized, their spins are correlated
 - Unique measurement in tt system as top lifetime is 1000x shorter than spin decorrelation time!
 - Amount of correlation depends on the initial state ($q\overline{q}$ or gg)
- Observable is $O_{ab} = \langle 4(S_t \cdot \hat{a})(S_{\overline{t}} \cdot \hat{b}) \rangle = \frac{\sigma(\uparrow\uparrow) + \sigma(\downarrow\downarrow) \sigma(\uparrow\downarrow) \sigma(\downarrow\uparrow)}{\sigma(\uparrow\uparrow) + \sigma(\downarrow\downarrow) + \sigma(\uparrow\downarrow) + \sigma(\downarrow\uparrow)}$

using the "off-diagonal" basis where correlation is maximized

 Reconstruct both dilepton and lepton+jets events with the matrixelement method to get spin correlation discriminant distribution

$$R(x) = \frac{P_{t\bar{t}}(x, \mathrm{SM})}{P_{t\bar{t}}(x, \mathrm{SM}) + P_{t\bar{t}}(x, \mathrm{null})}$$

where P is the probability for a given spin hypothesis (SM or null)

D0: spin correlation

- Template fit allows for extraction of spin correlation strength O_{off} = 0.89 ± 0.16 (stat) ± 0.15 (syst)
 - SM value = 0.80
 - 4.2 SD significance
- Systematic uncertainties dominated by signal modeling issues
- As pp and gg initial states lead to different correlation strengths, can extract the fraction of tt from each at NLO
 - $f_{gg} = 0.08 \pm 0.12 \text{ (stat)} \pm 0.11 \text{ (syst)}$
 - SM value = 0.135

Top production asymmetry

- Arises from interference at NLO QCD
 - Only in the qq initial state!
- ~10% forward-backward asymmetry at the Tevatron
- ~1% central-noncentral asymmetry at the LHC

- Early Tevatron asymmetry measurements gave large values, suggesting non-SM physics!
 - (and predicted values had been smaller....)
- What happened on the road to figuring it out?

Lepton asymmetry

- Reconstructing top direction for asymmetry measurement is complicated, requires unfolding
- Simpler: forward-backward asymmetry of decay lepton
 - SM asymmetry only ~4%, but no unfolding required
- CDF and D0 measurements in both dilepton and lepton+jet final states
 - CDF: (9.0^{+2.8}-2.6)%
 - D0: (4.2 ± 2.4)%
- CDF result slightly above expected value with dependence on lepton rapidity

CDF: bottom asymmetry

- New physics affecting the top forward-backward asymmetry would affect other quark production too. Look at bottom quarks!
- Most $b\overline{b}$ production is from gg, but enhanced $q\overline{q}$ production for highmass pairs
- Identify b jets with secondary vertices, assign flavor with jet charge difference
- Account for mixing, secondary decays, charge mis-ID, non-b backgrounds
- Unfold and correct to particle level
- Can exclude some axigluon models
- Separate low-mass search also consistent with SM expectations

Asymmetry in I+jets

- CDF measurement well-established, with result higher than SM predictions:
 - $A_{FB} = (16.4 \pm 4.5)\%$

- D0 measurement includes larger phase space (with I+3 jet sample), plus new top reconstruction method and two-dimensional unfolding
 - $A_{FB} = (10.6 \pm 3.0)\%$

Asymmetry in I+jets

• Both experiments measure kinematic dependence of asymmetry:

• In general greater dependence on kinematic variables than predicted

D0: Asymmetry in dileptons

- Harder than I+jets because of the two neutrinos in each event!
- Simultaneous measurement of production asymmetry and top polarization in dilepton events using matrix element method
 - Novel application of matrix element techniques
- Method allows for full reconstruction of event kinematics in probabilistic fashion
- Assign a likelihood per event for both the asymmetry and the lepton decay angle for most probable kinematic value
 - Lepton angle is with respect to beam axis in $t\bar{t}$ rest frame

D0: Asymmetry in dileptons

- Systematic uncertainties dominated by signal modeling, in particular hadronization and showering, and method calibration
- Results without constraining either quantity:
 - $A_{FB} = (15.0 \pm 6.4 \text{ (stat)} \pm 4.9 \text{ (syst)})\%$
 - κP = (7.2 ± 10.5 (stat) ± 4.2 (syst))%
 - Consistent with SM, no evidence for axigluon models
- Results after constraining "other" quantity to SM value:
 - $A_{FB} = (17.5 \pm 5.6 \text{ (stat)} \pm 3.1 \text{ (syst)})\%$
 - κP = (11.3 ± 9.1 (stat) ± 1.9 (syst))%
- Combine dilepton result with SM polarization with previous lepton+jets asymmetry measurement to obtain final D0 result:
 - $A_{FB} = (11.8 \pm 2.5 \text{ (stat)} \pm 1.3 \text{ (syst)})\%$

CDF: Asymmeti

- Harder than I+jets because of the two is
- Use a likelihood-based algorithm to rec[₹] thus top momenta) from observed kine
 - Rather than a single solution, form a Δy (reconstructed) Δy (generated) kinematic variables, and include both possible jet-lepton pairings
- Also used a likelihood-based scheme to unfold back to parton level
- Optimize event selection to avoid poorly reconstructed events

CDF: Asymmetry in dileptons

- $A_{FB} = (12 \pm 13 \text{ (stat)} \pm 7 \text{ (syst)})\%$
- Some sensitivity to |Δy| dependence, nothing significant observed
 - Note better resolution at larger $|\Delta y|$ due to less migration across y = 0
- Combine with lepton + jets result
 - $A_{FB} = (16.0 \pm 4.5)\%$
- Consistent with SM

Submitted to PRD last week! arxiv:1602.09015

Top quark asymmetries

Tevatron $t\bar{t}$ asymmetry

- All Tevatron results use full datasets
- Decent agreement between results from two experiments, and with prediction from theory

Tevatron top in the LHC era

- Tevatron top physics is still interesting, even with the LHC onslaught!
- Mature experiments make for sophisticated measurements
 - Well-understood datasets, well-modeled detectors
 - Allows for significant creativity in analyses
- Complementarity of initial state provides unique opportunities
 - Production asymmetry cannot be explored as well at LHC
 - s-channel much more difficult at LHC
- Arguably LHC has much to learn from the Tevatron experience
- Last few Tevatron top production measurements coming "soon" stay tuned!

#