b-flavour tagging in *pp* collisions at LHCb

Vincenzo Battista, on behalf of the LHCb collaboration

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Les Rencontres de Physique de La Vallée d'Aoste, La Thuile, Aosta Valley, March 6-12, 2016

Vincenzo Battista (EPFL)

The Large Hadron Collider beauty (LHCb) Experiment

Forward spectrometer ($2 < \eta < 5$) optimized for *b*- and *c*- hadron physics.

High-precision measurements in flavour physics (CKM, beyond SM ...).

Collected data:

- 2010-2012 (RunI, $\approx 3 \text{fb}^{-1}$) + 2015 ($\approx 320 \text{pb}^{-1}$).
- More than $26 \times 10^{10} b\bar{b}$ pairs, all *b* and *c* hadron species (*B*, Λ_b , Ω_b ...).

Excellent performances [Int. J. Mod. Phys. A 30, 1530022 (2015)]:

- Momentum resolution: $\frac{\sigma_p}{p} \approx 0.5 \cdot 0.8 \%$ (p < 100 GeV/c).
- Impact Parameter (IP) resolution: $\sigma_{IP} \approx 20 \ \mu m$ (at high p_T).
- Decay time resolution: $\sigma_t \approx 50$ fs.
- Particle Identification (PID): $\epsilon(K) \approx 95\%$, π mis-ID $\approx 5\%$ (p < 100 GeV/c).

Measurements of time-dependent asymmetries and decay rates require knowledge of **B** flavour at the production time:

$$\frac{\Gamma(\bar{B} \to f) - \Gamma(B \to f)}{\Gamma(\bar{B} \to f) + \Gamma(B \to f)} \propto S\sin(\Delta m t) - C\cos(\Delta m t)$$

$$\Gamma(B \to f) \propto e^{-t/\tau} [\dots \pm \cos(\Delta m t) + \dots]$$

Flavour tagging algorithms tag the candidate as *B* or \overline{B} (*tag decision*) with some efficiency and mistag probability.

See Mirco Dorigo's talk on CP violation and mixing (08/03/2016).

Flavour Tagging Algorithms

Same Side (SS): correlation between flavour of the *b*-hadron and charge of the particle (pion, kaon, proton) produced next to the signal *b*-hadron in the hadronisation process.

Opposite Side (OS): correlation between flavour of the *b*-hadron and charge of a particle (pion, kaon, lepton, charmed hadron) or the reconstructed secondary vertex produced from the other *b*-hadron in the event.

< □ > < 🗇 >

Efficiency: fraction of tagged events.

$$\epsilon_{\text{tag}} = \frac{N_{\text{tag}}}{N_{\text{tag}} + N_{\text{untag}}}$$

 \Rightarrow Depends of p_T spectrum of signal *B*.

Mistag fraction: fraction of events with wrong tag decision.

$$\omega = \frac{N_{\rm wrong}}{N_{\rm wrong} + N_{\rm right}}$$

⇒ *Dilution* of asymmetries and decay rates. ⇒ Mistag probability η computed by taggers needs calibration $\omega(\eta)$ to provide unbiased estimate of ω .

Tagging power:

$$\epsilon_{\rm eff} = \epsilon_{\rm tag} D^2 = \epsilon_{\rm tag} \langle (1 - 2\omega(\eta))^2 \rangle$$

 \Rightarrow Effect on the expected statistical uncertainty on a time-dependent asymmetry:

 $\sigma \propto 1/\sqrt{\epsilon_{\rm eff}N}$

[LHCB-PAPER-2015-056]

Calibrate predicted mistag on data:

$$\begin{split} \omega &= p_0 + p_1(\eta - \langle \eta \rangle) \\ \omega(B) - \omega(\bar{B}) &= \Delta \omega = \Delta p_0 + \Delta p_1(\eta - \langle \eta \rangle) \end{split}$$

Charged *B* **decays:** $B^+ \rightarrow J/\psi K^+$, $B^+ \rightarrow D^0 \pi^+$ Self-tagged decays. Large statistics/small systematics.

Neutral *B* decays: $B^0 \rightarrow J/\psi K^*$, $B^0 \rightarrow D^{*-}\mu^+\nu_{\mu}$ Mistag ω obtained from $B - \overline{B}$ oscillation amplitude (*dilution*). Large statistics, but more systematics.

 B_s^0 decay: $B_s^0 → D_s^- π^+$, $B_s^{**} → B^+ K^-$ Only data-driven modes for B_s^0 . Low statistics.

→ Ξ → < Ξ →</p>

Vincenzo Battista (EPFL)

Selection of OS leptons and kaons: large IP and p_T , PID requirements applied. **Selection** of OS secondary vertices: two tracks with high IP and p_T , good vertex *quality*

Mistag estimation from Neural Networks (NN). Calibration on $B^+ \rightarrow J/\psi K^+$ data. Both global information (number of tagging particles, pile-up vertices...) and tagging particle properties (kinematics...) used for

Tagging decision and **mistag** for each tagger $(e, \mu, ...)$ combined in a single response.

Relative increase of ϵ_{eff} by $\approx 15\%$ w.r.t 2011 analyses due to selection improvement.

Taggers	ε_{tag} [%]	ω [%]	$\varepsilon_{\text{tag}}(1 - 2\omega)^2 [\%]$
μ	4.8 ± 0.1	29.9 ± 0.7	0.77 ± 0.07
e	2.2 ± 0.1	33.2 ± 1.1	0.25 ± 0.04
K	11.6 ± 0.1	38.3 ± 0.5	0.63 ± 0.06
$Q_{\rm vtx}$	15.1 ± 0.1	40.0 ± 0.4	$0.60 {\pm} 0.06$
OS average ($\eta_c < 0.42$)	17.8 ± 0.1	$34.6 {\pm} 0.4$	1.69 ± 0.10
OS sum of η_c bins	27.3 ± 0.2	36.2 ± 0.5	2.07 ± 0.11

training.

SS Kaons related to the fragmentation process of the signal B_s^0 .

Two NN, both trained on simulated $B_s^0 \rightarrow D_s^- \pi^+$ samples:

- NN1: discriminate fragmentation kaons from background tracks.
- NN2: determine tagging decision and mistag probability.

Calibration on $B_s^0 \rightarrow D_s^- \pi^+$ from fit to decay time distribution:

- simultaneous fit to *untagged*, *mixed* and *unmixed* samples, with *η* treated as observable;
- Decay rate for untagged sample:

$$\propto (1 - \epsilon_{tag}) e^{-t/\tau_s} \cosh\left(\frac{\Delta\Gamma_s t}{2}\right)$$

• Decay rate for mixed/unmixed samples:

$$\propto \epsilon_{tag} e^{-t/\tau_s} \left[\cosh\left(\frac{\Delta \Gamma_s t}{2}\right) \pm (1 - 2\omega(\eta)) \cos(\Delta m_s t) \right]$$

 $p_0 \text{ and } p_1 \text{ fitted, } \langle \eta \rangle \text{ fixed.}$

Calibration on $B_s^0 \to D_s^- \pi^+$ combined with the calibration from *self-tagged*, *hadronic* $B_{s2}^s(5840)^0 \to B^+K^-$ decay:

- Assume that B_s^0 and $B_{s2}^*(5840)^0$ have the same hadronization process.
- Charge of B⁺ determines flavour of B^{*}_{s2}(5840)⁰. It is compared with tagger decision to calibrate η.

Calibration portability checked on $B_s^0 \rightarrow J/\psi\phi$, $B_s^0 \rightarrow D_s^+ D_s^-$ and $B_s^0 \rightarrow \phi\phi$. Largest systematic due to different distribution of $p_T(B)$ in these decays w.r.t $B_s^0 \rightarrow D_s^- \pi^+$.

Performances (on $B_s^0 \rightarrow D_s^- \pi^+$): $\epsilon_{tag} = (60.38 \pm 0.16)\%$ $\epsilon_{eff} = (1.80 \pm 0.19(\text{stat}) \pm 0.18(\text{syst}))\%$ Improvement $\mathcal{O}(50\%)$ w.r.t. previous SSKaon implementation.

SSKaonNNet applications

 $\begin{array}{l} B_s^0 \rightarrow J/\psi K^+ K^- \ [\text{PRL 114, 041801 (2015)}] \\ \text{Weak phase (combined with } B_s^0 \rightarrow J/\psi \pi^+ \pi^-): \\ \phi_s = -0.010 \pm 0.039 \\ \text{Most precise measurement to date.} \\ \text{OS Combination + SSNNetKaon:} \\ \epsilon_{eff} = (3.73 \pm 0.15)\% \\ +0.60\% \text{ w.r.t [PRD 87, 112110 (2013)]} \end{array}$

Tagger	$\epsilon_{ m eff}$
OS (Incl.)	$(2.55 \pm 0.14)\%$
SS (Incl.)	$(1.26 \pm 0.17)\%$

$$\begin{split} B_s^0 &\rightarrow D_s^+ D_s^- \text{ [PRL 113, 211801 (2014)]} \\ \text{First } \phi_s \text{ measurement in this mode:} \\ \phi_s &= 0.02 \pm 0.17(\text{stat}) \pm 0.02(\text{syst}) \\ \text{OS Combination} + \text{SSNNetKaon:} \\ \epsilon_{eff} &= (5.33 \pm 0.18(\text{stat}) \pm 0.17(\text{syst}))\% \end{split}$$

Tagger	$\epsilon_{ m eff}$
OS (Incl.)	$(3.49 \pm 0.10 \pm 0.17)\%$
SS (Incl.)	$(2.37 \pm 0.23 \pm 0.18)\%$

Other analyses using SSKaonNNet: $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ [PLB 736, 186 (2014)] $B_s^0 \rightarrow \phi \phi$ [PRD 90, 052011 (2014)] $B_s^0 \rightarrow D_s^- K^+$ [JHEP 11 (2014) 060]

イロト イポト イヨト イヨト

A new tagger: OSCharm [JINST 10 (2015) P10005]

OS Charmed hadrons produced via $b \rightarrow c$ transitions: $D^0 \rightarrow K^- \pi^+, D^+ \rightarrow K^- \pi^+ \pi^+, ...$

Boosted Decision Tree (BDT) to suppress background and estimate mistag:

- Features: decay kinematics and vertex, *c*-hadron flight distance...
- Training on Monte Carlo sample.

Standalone performance on data $(B^+ \rightarrow J/\psi K^+, B^0 \rightarrow J/\psi K^{0*}, B^0 \rightarrow D^- \pi^+, B^0_s \rightarrow D^-_s)$: $\epsilon_{tag} \approx 3.1 - 4.1\%$ $\epsilon_{eff} \approx 0.3 - 0.4\%$

Combination with other standard OS taggers: Tagging power (on $B^+ \rightarrow J/\psi K^+$): absolute gain $\approx +0.11\%$ compared to standard OS only. ($\approx 2.5\%$)

• New BDT-based SSPion and SSProton taggers [CERN-THESIS-2015-040].

BDT trained on $B^0 \rightarrow D^{\pm} \pi^{\mp}$ data with decay time t < 2.2 ps (to suppress oscillations).

Mistag from time-dependent fit in bins of BDT.

Tagging power on $B^0 \rightarrow D^{\pm} \pi^{\mp}$: $\epsilon_{eff} \approx 1.6\%$ for SSPion (+20% relative increase w.r.t standard SSPion tagger) $\epsilon_{eff} \approx 0.5\%$ for SSProton

• New Inclusive Tagger [ACAT 2016]

BDT trained with features related to signal B, tracks and vertices from the entire event.

No OS vs SS distinction.

イロト 不得 とくほ とくほ とうほ

Summary

Flavour Tagging in LHCb allows precision measurements in *b*-hadron physics, despite the difficult environment (*pp collider*):

- Most precise measurement of ϕ_s .
- CP violation in $B^0 \rightarrow J/\psi K_S^0$ [PRL 115, 031601 (2015)]:
 - $S = 0.731 \pm 0.035(\text{stat}) \pm 0.020(\text{syst})$
 - $C = -0.038 \pm 0.032(\text{stat}) \pm 0.005(\text{syst})$

Most precise result at hadron machines, same precision as BaBar and Belle.

OS taggers: standard algorithm for all analyses. Relative tagging power increase $\approx 15\%$ since 2011.

SSKaon: great improvement with new NN-based algorithm. Relative tagging power increase $\approx 50\%$ w.r.t previous implementation.

New results and developments:

- OSCharm: ≈ 4% relative increase of tagging power for OS combination.
- BDT-based SS Pion and Proton.
- Inclusive Tagger.

Thank you

Backup

Vincenzo Battista (EPFL)

09/03/2016 1/8

The Golden Mode $B^0 \to J/\psi K_S^0$ [PRL 115, 031601 (2015)]

Standard OS combination + SSPion.

Calibration on $B^+ \rightarrow J/\psi K^+$ (only OS) and $B^0 \rightarrow J/\psi K^{*0}$ (both).

Total tagging power: $\epsilon_{eff} = (3.02 \pm 0.05)\%$ +0.64% w.r.t [PLB 721 (2013) 24-31] Increase due to introduction of SSPion.

Tagger	$\epsilon_{ m eff}$
OSComb	$(2.63 \pm 0.04)\%$
SSPion	$(0.376 \pm 0.0024)\%$
Overlap	$(0.503 \pm 0.010)\%$

Measured CP violation: $S = 0.731 \pm 0.035(\text{stat}) \pm 0.020(\text{syst})$ $C = -0.038 \pm 0.032(\text{stat}) \pm 0.005(\text{syst})$ Same precision as BaBar, Belle. Most precise measurement at hadron machines.

Vincenzo Battista (EPFL)

Vertex Charge Tagger. Inclusive reconstruction of two tracks (under π hypothesys) compatible with a *B* decay vertex.

Other tracks compatible with same vertex added.

Charge of the tagging *B*:

$$Q_{\rm vtx} = \frac{\sum_i Q_i p_{T_i}^k}{p_{T_i}^k}$$

Tagging power maximum for k = 0.4. Candidates $|Q_{vtx}| < 0.275$ rejected (*untagged*)

Tagging combination.

$$\begin{split} P(b) &= \frac{p(b)}{p(b) + p(\bar{b})}, & P(\bar{b}) = 1 - P(b) \\ p(b) &= \prod_{i} \left(\frac{1 + d_{i}}{2} - d_{i}(1 - \eta_{i}) \right), & p(\bar{b}) = \prod_{i} \left(\frac{1 - d_{i}}{2} + d_{i}(1 - \eta_{i}) \right) \end{split}$$

Mistag and tagging decision.

If $P(b) > P(\bar{b})$: d = -1, $\eta = 1 - P(b)$ If $P(\bar{b}) > P(b)$: d = +1, $\eta = 1 - P(\bar{b})$

Correlations among taggers neglected. Correction via calibration on data.

How to: mistag from NN (SSKaonNNet) [LHCB-PAPER-2015-056]

Output o_1 of NN1 used as input variable for NN2.

NN2 output:

$$P(B_s^0|o_2) = o_2 = \frac{N_{B_s^0}(o_2)}{N_{B_s^0}(o_2) + N_{\bar{B}_s^0}(o_2)}$$

But: o_2 distribution has to be symmetric around $o_2 = 0.5$. CP and *K* detection asymmetries shift the o_2 output

Take symmetrized NN2 output instead:

$$o_2' = \frac{o_2 + (1 - \bar{o}_2)}{2}$$

where $\bar{\sigma}$ is obtaining flipping the charge of input NN2 variables.

Tagging decision: B^0 if a' > 0.5

$$\bar{B}_{s}^{0}$$
 if $o_{2}^{'} < 0.5$

Mistag probability:

 $\eta = 1 - o'_2$ for B^0_s $\eta = o'_2$ for \overline{B}^0_s

Source	σ_{p_0}	σ_{p_1}			
Decay time resolution	0.0033	0.060	Source	σ_{p0}	σ_{p1}
Calibration method	0.0002	0.006	Signal model	0.0063	0.012
Signal mass model	0.0001	0.002	Background model	0.0008	0.054
Background mass model	0.0015	0.025	K from $B_{s2}^*(5840)^0$ p_T selection	0.0028	0.039
$B_s^0 \to D_s^- K^+$ yield	0.0001	0.008	K from $B_{s2}^*(5840)^0$ particle identification	0.0025	0.015
Sum in quadrature	0.0036	0.066	Sum in quadrature	0.0074	0.069

$$B_s^0 \rightarrow D_s^- \pi^+$$

$$B_{s2}^{*}(5840)^{0} \rightarrow B^{+}K^{-}$$

<ロト < 四ト < 回ト < 三ト < 三ト

Source	σ_{p_0}	σ_{p_1}
Weighting in $p_{\rm T}$	0.0011	0.030
Weighting in track multiplicity	0.0006	0.006
Sum in quadrature	0.0012	0.031

Calibration portability

(Pfl

SSNNetKaon calibration asymmetries

Calibrate mistag difference between B_s^0 and \bar{B}_s^0 :

$$\begin{split} \omega(\eta) &= p_0 + \frac{\Delta p_0}{2} + \left(p_1 + \frac{\Delta p_1}{2}\right) \left(\eta - \langle \eta \rangle\right) \\ \bar{\omega}(\eta) &= p_0 - \frac{\Delta p_0}{2} + \left(p_1 - \frac{\Delta p_1}{2}\right) \left(\eta - \langle \eta \rangle\right) \end{split}$$

Data-driven method: $D_s^- \rightarrow \phi(\rightarrow K^+K^-)\pi^-$. SSKaonNNet tag D_s^- flavour (decision opposite to that for B_s^0).

Background subtracted using *sWeights* computed on D_s^- invariant mass distribution. Results:

$$\Delta p_0 = -0.0163 \pm 0.0022(\text{stat}) \pm 0.0030(\text{syst})$$
$$\Delta p_1 = -0.031 \pm 0.025(\text{stat}) \pm 0.045(\text{syst})$$
$$\Delta \epsilon_{\text{tag}} = (0.17 \pm 0.11(\text{stat}) \pm 0.68(\text{syst}))\%$$

Non-zero shift of p_0 due to different interaction in matter of K^{\pm} .

Decay mode	Relative rate	Relative power
$D^0 \rightarrow K^- \pi^+$	10.0%	24.0%
$D^0 \to K^-\pi^+\pi^+\pi^-$	5.9%	8.4%
$D^+ \rightarrow K^- \pi^+ \pi^+$	10.3%	2.6%
$H_c \rightarrow K^- \pi^+ X$	69.7%	61.5%
$H_c \rightarrow K^- e^+ X$	0.5%	0.2%
$H_c \rightarrow K^- \mu^+ X$	3.4%	0.3%
$\Lambda_c^+ \rightarrow p^+ K^- \pi^+$	0.2%	2.4%

Sample	$\delta p_0 \ (10^{-3})$	p_1	$\Delta p_0 (10^{-3})$	Δp_1
$B^+ \rightarrow J/\psi^+$	$-25 \pm 3 \pm 3$	$1.00 \pm 0.06 \pm 0.02$	$15 \pm 5 \pm 4$	$-0.08\pm 0.12\pm 0.04$
$B^0 \rightarrow J/\psi^{*0}$	$-18\pm8\pm3$	$1.16 \pm 0.17 \pm 0.02$	$23\pm11\pm4$	$0.21 \pm 0.25 \pm 0.04$

Decay modes used

Calibration

・ロト ・個ト ・ヨト ・ヨト

Sample	ε_{tag}	ω	$\varepsilon_{\mathrm{eff}}$
Simulation	4.88%	37.0%	0.33%
$B^+ \rightarrow J/\psi^+$	$(3.11 \pm 0.02)\%$	$(34.6 \pm 0.3 \pm 0.3)\%$	$(0.30 \pm 0.01 \pm 0.01)\%$
$B^0 \rightarrow J/\psi^{*0}$	$(3.32 \pm 0.04)\%$	$(35.0 \pm 0.8 \pm 0.3)\%$	$(0.30 \pm 0.03 \pm 0.01)\%$
$B^0 \rightarrow D^- \pi^+$	$(4.11 \pm 0.03)\%$	$(34.4 \pm 0.4 \pm 0.3)\%$	$(0.40 \pm 0.02 \pm 0.01)\%$
$B^0_s \to D^s \pi^+$	$(3.99 \pm 0.07)\%$	$(34.4\pm0.6\pm0.3)\%$	$(0.39\pm0.03\pm0.01)\%$

Performance

-32

LHCb: RunII and upgrade

Expected sensitivity assuming same Flavour Tagging performances of Run I

Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
B_s^0 mixing	$\phi_s(B_s^0 \to J/\psi \phi) \text{ (rad)}$	0.049	0.025	0.009	~ 0.003
	$\phi_s(B_s^0 \to J/\psi f_0(980)) \text{ (rad)}$	0.068	0.035	0.012	~ 0.01
	$A_{\rm sl}(B_s^0)~(10^{-3})$	2.8	1.4	0.5	0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.15	0.10	0.018	0.02
penguin	$\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.023	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_S) \text{ (rad)}$	0.30	0.20	0.036	0.02
Right-handed	$\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma) \text{ (rad)}$	0.20	0.13	0.025	< 0.01
currents	$\tau^{\text{eff}}(B_s^0 \rightarrow \phi \gamma) / \tau_{B_s^0}$	5%	3.2%	0.6%	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{ GeV}^2/c^4)$	0.04	0.020	0.007	0.02
penguin	$q_0^2 A_{FB}(B^0 \rightarrow K^{*0}\mu^+\mu^-)$	10%	5%	1.9%	$\sim 7\%$
	$A_{I}(K\mu^{+}\mu^{-}; 1 < q^{2} < 6 \text{ GeV}^{2}/c^{4})$	0.09	0.05	0.017	~ 0.02
	$\mathcal{B}(B^+ \rightarrow \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \rightarrow K^+ \mu^+ \mu^-)$	14%	7%	2.4%	$\sim 10\%$
Higgs	$B(B_s^0 \rightarrow \mu^+ \mu^-)$ (10 ⁻⁹)	1.0	0.5	0.19	0.3
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	220%	110%	40%	$\sim 5\%$
Unitarity	$\gamma(B \rightarrow D^{(*)}K^{(*)})$	7°	4°	0.9°	negligible
triangle	$\gamma(B_s^0 \to D_s^{\mp} K^{\pm})$	17°	11°	2.0°	negligible
angles	$eta(B^0 o J/\psi \ K^0_S)$	1.7°	0.8°	0.31°	negligible
Charm	$A_{\Gamma}(D^0 \to K^+ K^-) \ (10^{-4})$	3.4	2.2	0.4	+
CP violation	$\Delta A_{CP} (10^{-3})$	0.8	0.5	0.1	+

Vincenzo Battista (EPFL)

3

イロト イロト イヨト イヨト

Vincenzo Battista (EPFL)

b-flavour tagging in pp collisions at LHCb

09/03/2016 8/8