

Top Quark Properties Measurements in CMS

Efe Yazgan on behalf of the CMS Collaboration

La Thuile 2016: Les Rencontres de Physique de la Vallée d'Aoste, 6-12 March Italy

The Top Quark

- The most massive particle known to date
- Very short lifetime shorter than the hadronization timescale
 - "Bare" quark properties
- The only elementary high mass particle that has color → EWK, QCD and flavor physics.
- The largest Yukawa coupling among the fermions
 - Special role in EWSB?
- Top and Higgs modify tree level SM processes through radiative corrections.

Electroweak fit before Higgs discovery consistent with measured $m_{\rm H}$ within 1.3 σ .

 A selection of measurements from CMS

- ttbar spin correlation
- ttbar asymmetries
- Top quark mass
- Underlying event in ttbar events
- All public CMS results at:
 - <u>https://twiki.cern.ch/twiki/bin/</u> view/CMSPublic/ <u>PhysicsResultsTOP</u>

Spin Correlations

- Heavy quark spins are correlated in QCD.
- Top quarks decay before their spins de-correlate.
- Can be measured with or without ttbar system reconstruction.

Spin Correlations – Dilepton Channel

CMS-PAS-TOP-14-023 arXiv:1601.01107

- Lepton angles \rightarrow very high resolution.
- Δφ (defined from lab-frame leptons) most sensitive, single variable
- Data corrected to parton level.
- Data agree well with the SM prediction.
- Dominant systematic uncertainty: top p_T modelling
- Asymmetries translated to f using NLO (QCD+EW) predictions.

Variable	$f_{\rm SM} \pm ({\rm stat}) \pm ({\rm syst}) \pm ({\rm theor})$	Total uncertainty
$A_{\Delta\phi}$	$1.14 \pm 0.06 \pm 0.13 {}^{+ 0.08}_{- 0.11}$	+0.16 - 0.18
$A_{\cos\varphi}$	$0.90 \pm 0.09 \pm 0.10 \pm 0.05$	± 0.15
$A_{c_1c_2}$	$0.87 \pm 0.17 \pm 0.21 \pm 0.04$	± 0.27
$A_{\Delta\phi}$ (vs. $M_{t\overline{t}}$)	$1.12 \pm 0.06 \pm 0.08 {}^{+ 0.08}_{- 0.11}$	+0.12 - 0.15

Spin Correlations – Dilepton Channel

Differential measurement of asymmetry variables in bins of $M_{t\bar{t}}, |y_{t\bar{t}}|, p_T^{t\bar{t}}|$

 \rightarrow Spin correlation sensitive variables have the largest variability w.r.t M₊₊. \rightarrow Unfolding M_t significantly reduces the top p_T uncertainty.

Spin Correlations – Dilepton Channel Limits on Chromo-Moments

- Anomalous, flavor-conserving, strong interaction between top quark and gluon?
 - *Model independent* search using an effective model.
 - Assume a particle exchange with a mass scale M > m_t

CMS-PAS-TOP-14-023 arXiv:1601.01107

Spin Correlations – Lepton+Jets Channel -- Matrix Element Method

- Spin correlation more difficult to measure in the lepton+jets channel.
 - Use a multivariate method.
 - leading order matrix element method to calculate event likelihoods.

(in three different detector regions)

CMS-PAS-TOP-13-015 arXiv:1511.06170

Spin Correlations – Lepton+Jets Channel -- Matrix Element Method

- MadWeight [JHEP 12 (2010) 068] to calculate per-event probabilities for the two hypotheses
- MadWeight partially corrects for ISR effect using the overall partonic p_T(ttbar)
- Kinematic fitter to select the 4 jets from LO ttbar as input to the LO ME.

$$-2\ln\lambda = -2\ln\frac{P(H_{non-SM})}{P(H_{SM})}$$

- → Fit to event likelihood ratios of f and bkg fraction using spin-correlated and –uncorrelated templates (constructed from NLO MC events)
- → Method calibration

$$f = 0.72 \pm 0.08 (stat)_{-0.13}^{+0.15} (syst)$$

Dominant systematic uncertainties: JES, QCD scale, top quark mass

Most precise result in I+jets to-date

CMS-PAS-TOP-13-015, arXiv:1511.06170

Spin Correlations – Lepton+Jets Channel -- Matrix Element Method

• Hypotheses testing using sample likelihoods: $L(x_1,...,x_n|H) = \prod_{i=1}^n P(x_i|H)$

2.2σ agreement with SM hypothesis2.9σ agreement with the uncorrelated hypothesis

CMS-PAS-TOP-13-015 arXiv:1511.06170

Hypothesis testing and template fit results consistent.

ttbar Asymmetries

- At LO \rightarrow No asymmetry
- At NLO: Interferences between qqbar diagrams
- No asymmetry from gluon fusion

only small contributions from quark-gluon scattering

Kuhn & Rodrigo, PRD 59 (1999) 054017

significant contributions from QCD-electroweak interference terms.

Charge Asymmetry at 8 TeV

$$\Delta |y|_{t\bar{t}} = |y_t| - |y_{\bar{t}}| \rightarrow \Upsilon_{t\bar{t}} = \tanh \Delta |y|_{t\bar{t}} \rightarrow \text{Changes sign under the exchange } t \leftrightarrow \bar{t}$$

$$\rho(\Upsilon) = \frac{1}{\sigma} \frac{d\sigma}{d\Upsilon} \quad \text{expressed in symmetric } (\rho^+) \text{ and anti-symmetric } (\rho^-) \text{ parts:}$$

$$\rho^+(\Upsilon) = [\rho(\Upsilon) \pm \rho(-\Upsilon)]/2 \rightarrow \hat{A}_C^{\Upsilon} = 2\int_0^{\tilde{Y}} \rho^-(\Upsilon)d\Upsilon \qquad \text{CMS-PAS-TOP-13-013} \text{ arXiv:1508.03862}$$

$$\rho(\alpha) = \rho^+ + \alpha\rho^- \rightarrow A_C^{\Upsilon} = \alpha \hat{A}_C^{\Upsilon} \quad \text{Template fit to extract the only free parameter } \alpha$$

$$\int_{0}^{\infty} \frac{\partial \varphi}{\partial t} = \frac{\partial \varphi}{\partial t} = \frac{\partial \varphi}{\partial t} \quad \int_{0}^{\infty} \frac{\partial \varphi}{\partial t} = \frac{\partial \varphi}{\partial t} = \frac{\partial \varphi}{\partial t} \quad \int_{0}^{\infty} \frac{\partial \varphi}{\partial t} = \frac{\partial \varphi}{\partial t} \quad \int_{0}^{\infty} \frac{\partial \varphi}{\partial t} = \frac{\partial \varphi}{\partial t} \quad \int_{0}^{\infty} \frac{\partial \varphi}{\partial t} = \frac{\partial \varphi}{\partial t} \quad \int_{0}^{\infty} \frac{\partial \varphi}{\partial t} = \frac{\partial \varphi}{\partial t} \quad \int_{0}^{\infty} \frac{\partial \varphi}{\partial t} = \frac{\partial \varphi}{\partial t} \quad \int_{0}^{\infty} \frac{\partial \varphi}{\partial t} = \frac{\partial \varphi}{\partial t} \quad \int_{0}^{\infty} \frac{\partial \varphi}{\partial t} \quad \int_{0}^{\infty} \frac{\partial \varphi}{\partial t} = \frac{\partial \varphi}{\partial t} \quad \int_{0}^{\infty} \frac{\partial \varphi}{\partial t} \quad$$

Charge Asymmetry at 8 TeV

- Most precise A_c.
- Result consistent with NLO QCD but does not rule out the alternative models considered (i.e. 200 GeV and 2 TeV axigluons, Z').

CMS-PAS-TOP-13-013, arXiv:1508.03862

physics scale of 1.5 TeV.

arXiv:1507.03119

CMS-PAS-TOP-12-033

Top Mass – Run I Legacy - The Ideogram Method

- Template method with multiple permutations (correct, wrong, unmatched) per event.
- All different permutations taken into account with weights + include b-quark tagging.
- Kinematic fit \rightarrow improve mass reconstruction.

1D fit:

2D fit: Determine m_t simultaneously with jet energy scale factor (JSF) in a joint likelihood fit.

Hybrid fit: use a prior for JES \rightarrow Gaussian constraint with μ =1 and

variance = total JEC uncertainty. JSF = 1.

Top Quark Mass Measurements

- Run I combination: 7+8 TeV in lepton+jets, dilepton, and all-hadronic channels
- Precision 0.3%
- Dominant systematic uncertainties: flavordependent JEC and b jet modeling.

CMS-PAS-TOP-14-022 arXiv:1509.04044

Dependence of Top Mass on Event Kinematics

- Find out (non-)perturbative effects that have different kinematic dependences.
- Study variables sensitive to
 - color connection,
 - ♦ ISR/FSR,
 - b-quark kinematics.

No indication of a kinematic bias.

Top Quark Mass in ttbar Events with a J/ ψ

- Mass from direct reconstruction → dominated by uncertainties in (b) jet energy scale and soft QCD modeling (e.g. b quark hadronization).
- Alternative: Use the correlation between the 3-prong leptonic mass and the top quark mass [CMS Coll., CERN-LHCC 92-003, 1992].

- Signal: ttbar and single top
- J/Ψ candidate mass: 3.0-3.2 GeV from 2 non-isolated muons (from the same jet) with p_T>4 GeV

NEW

- Wrong lepton-pairing: 51%.
- Wrong pairings still have some correlation to top mass
 - Use good & wrong pairings
- Fit to $M_{J/\Psi + I}$ with an analytic function
- Minimal experimental uncertainties.
- Large reliability on fragmentation modeling.
- Small number of events due to the small BR (=3.2x10⁻⁴).

Top Quark Mass in ttbar Events with a J/ψ

- First experimental result using this method.
- Result statistically limited: With next runs of LHC → as good as direct mass measurements.
- Most dominant systematic uncertainties: Top p_T, b-fragmentation, and MadGraph5 Born-level vs Powheg. → Might be improved with the upcoming versions of generators.

Top Quark Pole Mass from ttbar Production Cross Section

- σ_{tt} vs m_t^{pole} from NNLO+NNLL prediction with different PDF sets with a fixed α_s .
- Full phase space cross sections at parton level with full Run-I data at 7 and 8 TeV in the most precise channel (eµ). → See Abideh Jafari's presentation in the morning session.
- The cross section fit repeated for three mass assumptions.
 - Uncertainties from detector effects evaluated separately for each mass point.
- Minimize theory x experimental likelihoods.

Summaries of Top Quark Mass Measurements

Underlying Event in tt Events at 13 TeV

- Investigate and improve ttbar event modeling.
- Charged particle activity through N^{ch}, Σp_T^{ch} , $< p_T^{ch} >$ in different regions defined relative to the ttbar system direction, $vs p_{\tau}$ (ttbar) and Njets.

MC/Data

CMS-PAS-TOP-15-017

100

200 300

p^{tt}_T [GeV]

2.2 fb⁻¹ (13 TeV)

It doesn't appear necessary to have separate heavy-quark UE tunes.

Summary

- Measurements of top quark properties at CMS are providing thorough tests of the standard model.
- Precise top quark properties measurements from run I
 - ttbar spin correlation
 - asymmetry and polarization measurements
 - Top quark mass (precision 0.3%)
 - Alternative top quark mass measurements
 - First measurement of ttbar \rightarrow J/ Ψ
 - ...
 - Underlying event modeling
 - New physics searches: ttg coupling, EAG, FCNC, ...
 - **۰**...
- LHC Run II:
 - Systematic uncertainty limited differential measurements
 - Top quark Ζ, γ, Η couplings
 - Ultimate precision in top quark mass
 - New physics through top quark properties?