Top quark physics (for BSM)

Roberto Franceschini (CERN TH) March 10th 2016 - La Thuile 2016

The luminous side of LHC...

ATLAS+CMS Preliminary	LHC <i>top</i> WG	Nov 20 2015							
$ f_{LV}V_{tb} = \sqrt{\frac{\sigma_{meas}}{\sigma_{tback}}}$ from single top quark	production								
σ _{theo} : NLO+NNLL MSTW2008nnlo PRD83 (2011) 091503, PRD82 (2010) 0 PRD81 (2010) 054028	054018,								
$\Delta \sigma_{theo}$: scale \oplus PDF		total theo							
m _{top} = 172.5 GeV		f V + (meas) + (theo)							
t-channel:		$ \mathbf{h}_{LV} \mathbf{v}_{tb} \neq (meas) \neq (meas)$							
ATLAS 7 TeV ¹	<mark>⊢_i∎i - i</mark>	$1.02\pm 0.06\pm 0.02$							
PRD 90 (2014) 112006(4.59 fb ⁻¹)									
ATLAS 8 TeV	┝──┼═┼──┥	$0.97 \pm 0.09 \pm 0.02$							
ATLAS-CONF-2014-007 (20.3 fb ⁻¹)									
CMS 7 TeV	<mark>I-I●I</mark> -I	$1.020 \pm 0.046 \pm 0.017$							
JHEP 12 (2012) 035 (1.17 - 1.56 fb ⁻¹)									
CMS 8 TeV	⊢ <mark>I⊕I</mark>	$0.979 \pm 0.045 \pm 0.016$							
JHEP 06 (2014) 090 (19.7 fb ⁻¹)									
CMS combined 7+8 TeV		$0.998\pm 0.038\pm 0.016$							
JHEP 06 (2014) 090									
CMS 13 TeV	 	1.12 ± 0.24 ± 0.02							
CMS-PAS-TOP-15-004 (42 pb ⁻¹)									
Wt:									
ATLAS 7 TeV		$1.03 + 0.15 \pm 0.03$							
PLB 716 (2012) 142-159 (2.05 fb ⁻¹)		- 0.10							
CMS 7 TeV	⊢	$1.01^{+0.16}_{-0.12}^{+0.03}_{-0.04}$							
PRL 110 (2013) 022003 (4.9 fb ⁻¹)		- 0.13 - 0.04							
ATLAS 8 TeV (*)		$1.10 \pm 0.12 \pm 0.03$							
ATLAS-CONF-2013-100 (20.3 fb ⁻¹)									
CMS 8 TeV ¹		1 03 + 0 12 + 0 04							
PBI 112 (2014) 231802 (12.2 fb ^{-1})									
LHC combined 8 TeV ^{1,2}		1.06 ± 0.11 ± 0.03							
ATLAS-CONF-2014-052									
CMS-PAS-TOP-14-009									
s-channel:									
ATLAS 8 TeV ²		$0.93 + 0.18 \pm 0.04$							
arXiv:1511.05980 (20.3 fb ⁻¹)		- 0.20							
Wt:									
ATLAS 8 TeV ^{1,2}		$1.01 \pm 0.10 \pm 0.03$							
arXiv:1510.03752 (20.3 fb ⁻¹)		¹ including top-guark mass uncertainty							
(*) Superseeded by results shown below	/ the line	² including beam energy uncertainty							
	!								
0.4 0.6 0.8	1 1.3	2 1.4 1.6 1.8							
f _{LV} V _{tb}									

Large amount of top quarks in the 13 TeV run

Better precision

Rare phenomena

CMS-PAS-TOP-15-014

2016/03/04

 $Mt = 173.5 \pm 3.0 \text{ (stat.)} \pm 0.9 \text{ (syst.)} \text{ GeV.}$

No jet energy scale

The other side of LHC ...

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Moriond 2014

ATLAS	Preliminar
-------	------------

AILAD Preliminary $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

	Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫ <i>L dt</i> [fb	Mass limit		Reference
Inclusive Searches	MSUGRA/CMSSM MSUGRA/CMSSM MSUGRA/CMSSM $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{\pm} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell v / v v) \tilde{\chi}_{1}^{0}$ GMSB (ℓ NLSP) GGM (bino NLSP) GGM (bino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino NLSP) GGM (higgsino NLSP) Gravitino LSP	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \left(Z \right) \\ 0 \end{array}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 2-4 jets 0-2 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 20.7 20.3 4.8 4.8 5.8 10.5	\tilde{q}, \tilde{g} \tilde{g} 1.1 TeV \tilde{g} 1.1 TeV \tilde{g} 1.3 TeV \tilde{g} 1.12 TeV \tilde{g} 1.12 TeV \tilde{g} 1.24 TeV \tilde{g} 1.24 TeV \tilde{g} 619 GeV \tilde{g} 619 GeV \tilde{g} 690 GeV \tilde{g} 690 GeV \tilde{g} 645 GeV	1.7 TeV $m(\tilde{q})=m(\tilde{g})$ any $m(\tilde{q})$ any $m(\tilde{q})$ $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ V $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ $\tan\beta < 15$ eV $\tan\beta > 18$ V $m(\tilde{\chi}_{1}^{0})>50 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})>50 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})>220 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})>220 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})>200 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})>10^{-4} \text{ eV}$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 ATLAS-CONF-2013-026 ATLAS-CONF-2012-014 1211.1167 ATLAS-CONF-2012-144 1211.1167
ğ med.	$ \begin{array}{l} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{+} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array} $	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ğ 1.2 TeV ğ 1.1 TeV ğ 1.34 Te ğ 1.3 Te	$\begin{array}{c} m(\tilde{\chi}_{1}^{0}) < 600 \ \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) < 350 \ \mathrm{GeV} \\ \mathbf{V} \qquad m(\tilde{\chi}_{1}^{0}) < 400 \ \mathrm{GeV} \\ \mathbf{V} \qquad m(\tilde{\chi}_{1}^{0}) < 300 \ \mathrm{GeV} \end{array}$	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$\begin{split} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1 (\text{light}), \tilde{t}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{light}), \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{heavy}), \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{natural GMSB}) \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \end{split}$	$\begin{array}{c} 0\\ 2\ e,\mu\ (\text{SS})\\ 1\mathchar`-2\ e,\mu\\ 2\ e,\mu\\ 0\\ 1\ e,\mu\\ 0\\ 1\ e,\mu\\ 0\\ 3\ e,\mu\ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b 1 ono-jet/c-t 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes ag Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.3 20.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} m(\tilde{\chi}_{1}^{0}) < 90 \ \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{\pm}) = 2 \ m(\tilde{\chi}_{1}^{0}) \\ m(\tilde{\chi}_{1}^{0}) = 55 \ \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) = m(\tilde{\imath}_{1}) \cdot m(W) \cdot 50 \ \mathrm{GeV}, \ m(\tilde{\imath}_{1}) < < m(\tilde{\chi}_{1}^{\pm}) \\ m(\tilde{\chi}_{1}^{0}) = 1 \ \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 200 \ \mathrm{GeV}, \ m(\tilde{\chi}_{1}^{\pm}) \cdot m(\tilde{\chi}_{1}^{0}) = 5 \ \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 0 \ \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 0 \ \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 0 \ \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 150 \ \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) > 150 \ \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) < 200 \ \mathrm{GeV} \\ \end{array}$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 1403.4853 1403.4853 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-068 1403.5222 1403.5222
EW direct	$\begin{split} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu}) \\ \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L}\nu\tilde{\ell}_{L}\ell(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{L}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \end{split}$	2 e, μ 2 e, μ 2 τ 3 e, μ 2-3 e, μ 1 e, μ	0 0 - 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} m(\tilde{\chi}_{1}^{0}) = \! 0 \; GeV \\ m(\tilde{\chi}_{1}^{0}) = \! 0 \; GeV, \; m(\tilde{\ell}, \tilde{\nu}) = \! 0.5(m(\tilde{\chi}_{1}^{\pm}) \! + \! m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{0}) = \! 0 \; GeV, \; m(\tilde{\tau}, \tilde{\nu}) \! = \! 0.5(m(\tilde{\chi}_{1}^{\pm}) \! + \! m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{\pm}) \! = \! m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}) \! = \! 0, \; m(\tilde{\ell}, \tilde{\nu}) \! = \! 0.5(m(\tilde{\chi}_{1}^{\pm}) \! + \! m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{\pm}) \! = \! m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}) \! = \! 0, \; sleptons \ decoupled \\ m(\tilde{\chi}_{1}^{\pm}) \! = \! m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}) \! = \! 0, \; sleptons \ decoupled \end{array}$	1403.5294 1403.5294 ATLAS-CONF-2013-028 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093
Long-ilveo particles	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e,$ GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow qq\mu$ (RPV)	Disapp. trk 0 μ) 1-2 μ 2 γ 1 μ , displ. vtx	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 22.9 15.9 4.7 20.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{split} & m(\tilde{\chi}_1^{\pm})\text{-}m(\tilde{\chi}_1^0)\text{=}160 \; MeV, \; \tau(\tilde{\chi}_1^{\pm})\text{=}0.2 \; ns \\ & m(\tilde{\chi}_1^0)\text{=}100 \; GeV, \; 10 \; \mu s{<}\tau(\tilde{g}){<}1000 \; s \\ & 10{<}tan\beta{<}50 \\ & 0.4{<}\tau(\tilde{\chi}_1^0){<}2 \; ns \\ & 1.5 \; {<}c\tau{<}156 \; mm, \; BR(\mu)\text{=}1, \; m(\tilde{\chi}_1^0)\text{=}108 \; GeV \end{split}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow ee \tilde{v}_{\mu}, e\mu \tilde{v}_{e} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{v}_{e}, e\tau \tilde{v}_{\tau} \\ \tilde{g} \rightarrow qqq \\ \tilde{g} \rightarrow \tilde{t}_{1}t, \tilde{t}_{1} \rightarrow bs \end{array} $	$ \begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (SS) \end{array} $	- 7 jets - - 6-7 jets 0-3 b	- Yes Yes Yes - Yes	4.6 4.6 4.7 20.7 20.7 20.3 20.7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 TeV $\lambda'_{311}=0.10, \lambda_{132}=0.05$ $\lambda'_{311}=0.10, \lambda_{1(2)33}=0.05$ $m(\tilde{q})=m(\tilde{g}), c\tau_{LSP}<1 \text{ mm}$ $m(\tilde{\chi}_1^0)>300 \text{ GeV}, \lambda_{121}>0$ $m(\tilde{\chi}_1^0)>80 \text{ GeV}, \lambda_{133}>0$ BR(t)=BR(b)=BR(c)=0%	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 <i>e</i> , µ (SS) 0	4 jets 2 <i>b</i> mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 350-800 GeV M* scale 704 GeV	incl. limit from 1110.2693 $m(\chi){<}80{ m GeV},$ limit of ${<}687{ m GeV}$ for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7$ TeV full data	$\sqrt{s} = 8$ TeV artial data	$\sqrt{s} =$ full	8 TeV data		10 ⁻¹ 1	Mass scale [TeV]	

Soft is hard

Soft is hard

Better precision

Rare phenomena

Soft is hard

Generic issue of new physics searches

SUSY as proxy to many other scenario fo new physics

Likely to persist at 13 TeV

more subtle signals \Rightarrow precision

more subtle signals \Rightarrow precision

Run2 ~ Subtle New Physics

Will not cover

"closed" games

• $\tilde{g} \rightarrow tt\chi$

(well known) indirect limits

- A_FB, A_C (e.g. review 1506.02800)
- ttZ, $tt\gamma$, ...
- $G_{\mu\nu} t \sigma_{\mu\nu} t$ ($\sigma(tt)$ 1210.2570, CMS-TOP-14-005 $\Delta \phi(\ell \ell)$, boosted 1412.6654)
- $G_{\mu\nu}T'\sigma_{\mu\nu}t$ (CMS-PAS-B2G-12-014 and alike)

• . . .

Will cover

- Top as a background
- Top as a source
- Top as a trigger

Will cover

- Top as a background for subtle new physics
- Top as a source of subtle new physics
- Top as a trigger for subtle new physics

Will cover

- Top as a background for subtle new physics
- Top as a source of subtle new physics
- Top as a trigger for subtle new physics

BSM in *precision* hadronic scattering

Top as a background

 $\Delta \Phi(\ell \ell)$

1205.5808 1412.4742+ATLAS-CONF-2014-056

 $\Delta \phi(\ell \ell)$

1205.5808 1412.4742+ATLAS-CONF-2014-056

σ(tīt)

1407.1043 + 1406.5375 + 1506.08616

light stop effects on top cross-section

New physics effect on mbl

Theory uncertainty is critical

New physics effect on m_{bl} and E_{bl}

RF - in preparation

Theory uncertainty is critical

Adding more variables

RF - in preparation

N-dim global analysis

Top as a source

Top as a source

Top as a trigger
Direct production of light states

despite being light, new physics can have

- low cross-section (EW states)
- subtle signatures (hadronic states)

 $pp \rightarrow t\bar{t}$ becomes a trigger and a source for new physics

top decays to BSM

top as a "portal"

<u>Direct</u> production of light new physics:

- $t \rightarrow bH^+ \rightarrow b\tau v$ (CMS-PAS-HIG-12-052)
- $t \rightarrow \tilde{t} \chi$ (few % BR in the MSSM)
- $t \rightarrow \tilde{\tau} b \rightarrow b b c (RPV \lambda')$

Indirect test through higher dimensional operators:

- $t \rightarrow cZ, cH$ (and $c \rightarrow q$, 1508.05796, 1312.4194, PAS-TOP-14-020)
- $t \rightarrow bc\ell$ (BNV 1107.3805, 1310.1618)
- $t \rightarrow qe\mu$ (1507.07163)
- t → qW (1404.2292)
- t → bbc (1407.1724,1407.1725)
 - Generic (SM is tiny)
 - can be done \rightarrow need to be done
 - indirect test, but some models in the reach (e.g. *cZ*, *cH*)

lots of dedicated searches, worth considering also BR measurement 1506.05074

stable LSP

$$t \rightarrow \tilde{t}\chi \rightarrow b ff' \chi\chi$$

hadronic stops in RPV SUSY

large QCD cross-section for direct production

hadronic stops in RPV SUSY

large QCD cross-section for direct production

larger QCD background!

stops from top in RPV SUSY

stops from top in RPV SUSY

stops from top in RPV SUSY

hadronic stops in RPV SUSY

stops from top in RPV SUSY

hadronic stops in RPV SUSY

RPV A"

Global picture ^{1506.05074} of top decay fractions

(BR measurement)

	Measured	SM	LEP
	(top quark)		(W)
$\sigma_{t\overline{t}}$	$178 \pm 3 \text{ (stat.)} \pm 16 \text{ (syst.)} \pm 3 \text{ (lumi.) pb}$	$177.3 \pm 9.0^{+4.6}_{-6.0} \text{ pb}$	
$\overline{B_j}$	66.5 ± 0.4 (stat.) ± 1.3 (syst.)	$67.51{\pm}0.07$	67.48 ± 0.28
B_e	13.3 ± 0.4 (stat.) ± 0.5 (syst.)	$12.72{\pm}0.01$	12.70 ± 0.20
B_{μ}	$13.4 \pm 0.3 \text{ (stat.)} \pm 0.5 \text{ (syst.)}$	$12.72{\pm}0.01$	$12.60 {\pm} 0.18$
$B_{ au}$	$7.0 \pm 0.3 \text{ (stat.)} \pm 0.5 \text{ (syst.)}$	$7.05 {\pm} 0.01$	$7.20{\pm}0.13$

precise test of SM

clearly a test for **BSM** (e.g. $t \rightarrow b \tau mET$)

interesting to see interpretation in new physics scenarios $(t \rightarrow b \tau mET, t \rightarrow c mET, t \rightarrow bff' mET, ...)$

W helicity fractions

interesting to see interpretation in new physics scenarios $(t \rightarrow b \tau mET, t \rightarrow c mET, t \rightarrow bff' mET, ...)$

Conclusions

large number of tops \rightarrow better understanding of top

- top in association with other states
- high precision study of top decay (including studies on hadrons)

precision is an asset, can be "inherited" for BSM interpretations

- "soft" new physics (mass~mtop) may be hard for searches
 - BSM signals in precision top obs. ($\sigma_{tt}, \Delta \varphi(\ell \ell), m_{b\ell}, E_{b}, ...$)
 - N-dim strategy to isolate multiple small coherent signals
 m_t < m_t and m_t < m_t -m_x very worth looking at
 - global picture of top decay, including BSM decays
 - several examples (light \tilde{t} , 4-fermions operators, ...)
 - top as a source of new physics, also trigger
 - rare or soft BSM decays of W and b into tt sample
 - rare or soft BSM associated to tt

Thank you!

Agashe, RF, Kim, Schulze - in preparation CMS PAS TOP-15-002 Fit Results Mean=4.194 \pm 0.008 Width=0.595 \pm 0.014 χ^2 /ndf=0.920 CMS 72.5 24 Preliminary 72. 71.5 71. Uncalibrated Measurement $E_{peak} = 66.28 \pm 0.50 \text{ GeV}$ $m_t = 170.37 \pm 0.82 \text{ GeV}$ E*(fit) [GeV] 70.5 16 70. Calibrated Measurement 14 $E_{peak} = 67.45 \pm 0.71 \text{ GeV}$ 69.5 m_t = 172.29 ± 1.17 GeV 12 69. <u>Data-Fit</u> Jncertainty 68.5 68. 170 172 174 176 log(E) 3.8 4.2 4.4 4.6 4 mtop(MC) [GeV]

 $\delta m_{top} = \pm (1.2(exp) + 0.6(th)) GeV$

Reduced sensitivity to possible new physics

Reduced sensitivity to possible new physics

Reduced sensitivity to QCD production corrections

Reduced sensitivity to possible new physics

Reduced sensitivity to QCD production corrections

Improved by calculation at NLO ± 1.2 (syst.) ± 0.6 (th.)

ttbb 1508.06868

large **multiplicity** → challenge for (precise) predictions

background for **BSM** searches

test of radiation of **b** associated to top

insist on well understood distributions to test SM and BSM

bound Br≲0.002 much below Br(W→τν)

insist on well understood distributions to test SM and BSM

Subtleties of the subtle effects

∆m_{top}≤300 MeV despite 5% deviations in the tails

- despite "large" difference in the tails, mtop is unaffected
 - good for mtop
 - would be terrible if this was the effect of new physics sough for in m_{top}

$\sigma(t\bar{t}): m_{\tilde{t}}+m_{\chi}< m_{t}$

1407.1043 + hep-ph/9605340

more on distributions later ...

interplay with top mass measurement

Top mass affected by BSM?

"proxy" for the kinematic fit used in the present "best" measurements

New physics effect on $m_{b\ell}$ and E_b

Eb and mbe behave differently

$$t \rightarrow bW \rightarrow b\ell v \longrightarrow \tilde{t} \rightarrow b \chi^{+} \rightarrow b\ell v \chi^{0}$$

$$\frac{m_{bx}}{m_{bx}} = \sqrt{\frac{(m_{t}^{2} - m_{\chi^{+}}^{2})(m_{\chi^{+}}^{2} - m_{\chi^{0}}^{2})}{m_{\chi}}}$$

$$\frac{m_{t}^{2} - m_{\chi^{+}}^{2}}{m_{t}^{2} - m_{\chi^{+}}^{2}}$$

$$= \frac{m_{t}^{2} - m_{\chi^{+}}^{2}}{m_{t}^{2} - m_{\chi^{+}}^{2}}$$

★ Harder E_b, softer m_b

2 mg

New physics effect on mbl and Eb

🖈 harder Еь, softer **m**ье

★ softer **E**_b, softer **m**_b*e*
New physics effect on m_{bl} and E_{bl}

New physics effect on mbl and Eb

New physics effect on $m_{b\ell}$ and E_{b}

New physics effect on $m_{b\ell}$ and E_{b}

New physics effect on mbl and Eb

mbe at NLO

Merged jet resonances

♦4j limits 'e e

BSM Top FCNC overview 1311.2028, ATL-PHYS-PUB-2013-012, CMS-PAS-FTR-13-016

Process	SM	2 HDM(FV)	2HDM(FC)	MSSM	RPV	RS
$t \rightarrow Zu$	7×10^{-17}	_	_	$\leq 10^{-7}$	$\leq 10^{-6}$	_
$t \to Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$
$t \to g u$	4×10^{-14}	—	—	$\leq 10^{-7}$	$\leq 10^{-6}$	_
$t \to gc$	5×10^{-12}	$\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$
$t \to \gamma u$	4×10^{-16}	—	—	$\leq 10^{-8}$	$\leq 10^{-9}$	_
$t \to \gamma c$	$5 imes 10^{-14}$	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$
$t \to h u$	2×10^{-17}	6×10^{-6}	—	$\leq 10^{-5}$	$\leq 10^{-9}$	—
$t \rightarrow hc$	3×10^{-15}	2×10^{-3}	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$

 $t \rightarrow cH \rightarrow \gamma\gamma$

RPV $\tilde{t} \chi^+ \chi^0$ simplified model

