Global analysis of $b \rightarrow$ sll anomalies: SM versus New Physics

Joaquim Matias
Universitat Autònoma de Barcelona

Lathuile

In collaboration with: B. Capdevila, S. Descotes-Genon, L. Hofer and J. Virto
Based on: DMV'13 PRD88 (2013) 074002, DHMV'14 JHEP 1412 (2014) 125, JM'12 PRD86 (2012) 094024 HM'15 JHEP 1509(2015)104, DHMV'15 1510.04239 (updated with final data) and CDHMV'16 (to appear)

All originated in Frank Krueger, J.M., Phys. Rev. D71 (2005) 094009

Analysis of FCNC in a model-independent approach, effective Hamiltonian:
$b \rightarrow \boldsymbol{s} \gamma\left({ }^{*}\right): \mathcal{H}_{\Delta F=1}^{S M} \propto \sum_{i=1}^{10} V_{t s}^{*} V_{t b} \mathcal{C}_{i} \mathcal{O}_{i}+\ldots$

- $\mathcal{O}_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\overline{\boldsymbol{s}} \sigma^{\mu \nu} P_{R} b\right) F_{\mu \nu}$
- $\mathcal{O}_{9}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma_{\mu} \ell\right)$
- $\mathcal{O}_{10}=\frac{e^{2}}{16 \pi^{2}}\left(\overline{\boldsymbol{s}} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma_{\mu} \gamma_{5} \ell\right), \ldots$

- SM Wilson coefficients up to NNLO + e.m. corrections at $\mu_{\text {ref }}=4.8 \mathrm{GeV}$ [Misiak et al.]:

$$
\mathcal{C}_{7}^{S M}=-0.29, \mathcal{C}_{9}^{S M}=4.1, \mathcal{C}_{10}^{S M}=-4.3
$$

- NP changes short distance $\mathcal{C}_{i}-\mathcal{C}_{i}^{\mathrm{SM}}=\mathcal{C}_{i}^{\mathrm{NP}}$ and induces new operators, like $\mathcal{O}_{7,9,10}^{\prime}=\mathcal{O}_{7,9,10}\left(P_{L} \leftrightarrow P_{R}\right) \ldots$ also scalars, pseudoescalar, tensor operators...

The way to obtain information on those Wilson coefficients is via a GLOBAL FIT to the relevant processes.

Updated GLOBAL FIT 2015:

THE OBSERVABLES

Rare $b \rightarrow s$ processes

- Inclusive

- $B \rightarrow X_{s} \ell^{+} \ell^{-}\left(d B R / d q^{2}\right) \ldots \mathcal{C}_{7}^{(\prime)}, \mathcal{C}_{9}^{(\prime)}, \mathcal{C}_{10}^{(1)}$
- Exclusive leptonic
- $B_{s} \rightarrow \ell^{+} \ell^{-}(B R)$ $\mathcal{C}_{10}^{(1)}$
- Exclusive radiative/semileptonic
- $B \rightarrow K^{*} \gamma\left(B R, S, A_{l}\right)$ $\mathcal{C}_{7}^{(\prime)}$
- $B \rightarrow K \ell^{+} \ell^{-}\left(d B R / d q^{2}\right) \ldots \mathcal{C}_{7}^{(1)}, \mathcal{C}_{9}^{(\prime)}, \mathcal{C}_{10}^{(1)}$
- $\mathbf{B} \rightarrow \mathbf{K}^{*} \ell^{+} \ell^{-}\left(d B R / d q^{2}\right.$, Optimized Angular Obs. $)$.. $\mathcal{C}_{7}^{(\prime)}, \mathcal{C}_{9}^{(\prime)}, \mathcal{C}_{10}^{(\prime)}$
- $B_{s} \rightarrow \phi \ell^{+} \ell^{-}\left(d B R / d q^{2}\right.$, Angular Observables) $\mathcal{C}_{7}^{(1)}, \mathcal{C}_{9}^{(\prime)}, \mathcal{C}_{10}^{(1)}$
- $\Lambda_{b} \rightarrow \Lambda \ell^{+} \ell^{-}$(None so far)
- etc.

Optimized Basis of Angular Observables for $B \rightarrow K^{*} \mu \mu$

The optimized observables $P_{i}^{(\prime)}$ come from the angular distribution $\overline{\mathbf{B}}_{\mathbf{d}} \rightarrow \overline{\mathbf{K}}^{* 0}\left(\rightarrow \mathbf{K}^{-} \pi^{+}\right) \mathbf{I}^{+} \mathbf{I}^{-}$with the $K^{* 0}$ on the mass shell. It is described by $\mathbf{s}=\mathbf{q}^{2}$ and three angles $\theta_{\ell}, \theta_{\mathbf{K}}$ and ϕ

$$
\frac{d^{4} \Gamma\left(\bar{B}_{d}\right)}{d q^{2} d \cos \theta_{\ell} d \cos \theta_{K} d \phi}=\frac{9}{32 \pi} \mathbf{J}\left(\mathbf{q}^{2}, \theta_{\ell}, \theta_{K}, \phi\right)=\sum_{i} J_{i}\left(q^{2}\right) f_{i}\left(\theta_{\ell}, \theta_{K}, \phi\right\}
$$

θ_{ℓ} : Angle of emission between $\bar{K}^{* 0}$ and μ^{-}in di-lepton rest frame. θ_{K} : Angle of emission between $\bar{K}^{* 0}$ and K^{-}in di-meson rest frame.
ϕ : Angle between the two planes.
\mathbf{q}^{2} : dilepton invariant mass square.
See talk T. Blake

$$
\begin{aligned}
& \frac{1}{\Gamma_{\text {full }}^{\prime}} \frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{K} d \cos \theta_{l} d \phi}=\frac{9}{32 \pi}\left[\frac{3}{4} F_{\mathrm{T}} \sin ^{2} \theta_{K}+\mathrm{F}_{\mathrm{L}} \cos ^{2} \theta_{K}+\left(\frac{1}{4} \mathrm{~F}_{\mathrm{T}} \sin ^{2} \theta_{K}-\mathrm{F}_{\mathrm{L}} \cos ^{2} \theta_{K}\right) \cos 2 \theta_{l}\right. \\
& +\sqrt{\mathrm{F}_{\mathrm{T}} \mathrm{~F}_{\mathrm{L}}}\left(\frac{1}{2} \mathrm{P}_{4}^{\prime} \sin 2 \theta_{K} \sin 2 \theta_{l} \cos \phi+\mathrm{P}_{5}^{\prime} \sin 2 \theta_{K} \sin \theta_{l} \cos \phi\right)+2 \mathrm{P}_{2} \mathrm{~F}_{\mathrm{T}} \sin ^{2} \theta_{K} \cos \theta_{l}+\frac{1}{2} \mathrm{P}_{1} \mathrm{~F}_{\mathrm{T}} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \cos 2 \phi \\
& \left.-\sqrt{\mathrm{F}_{\mathrm{T}} \mathrm{~F}_{\mathrm{L}}}\left(\mathrm{P}_{6}^{\prime} \sin 2 \theta_{K} \sin \theta_{l} \sin \phi-\frac{1}{2} \mathrm{P}_{8}^{\prime} \sin 2 \theta_{K} \sin 2 \theta_{l} \sin \phi\right)-\mathrm{P}_{3} \mathrm{~F}_{\mathrm{T}} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \sin 2 \phi\right]\left(1-\mathrm{F}_{\mathrm{S}}\right)+\frac{1}{\Gamma_{\text {full }}^{\prime}} W_{\mathrm{S}}
\end{aligned}
$$

Brief flash on the anomalies

Why so much excitement in Flavour Physics? What changed in and after 2013?

- First measurement by LHCb of the basis of optimized observables with $1 \mathrm{fb}^{-1}$:

$\Rightarrow P_{2}$ exhibited a 2.9σ deviation in the bin [2,4.3] and P_{5}^{\prime} exhibits a 3.7σ in the [4.3,8.7] bin.
- In 2015 the so called anomaly in P_{5}^{\prime} is confirmed with $3 \mathrm{fb}^{-1}$ in 2 bins with 2.9σ each:

$\Rightarrow P_{2}$ will require a bit of patience to become more interesting (... a bit more of data)

$$
R_{K}=\frac{\operatorname{Br}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)}{\operatorname{Br}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)}=0.745_{-0.074}^{+0.090} \pm 0.036
$$

- It deviates 2.6σ from SM.
- Data on $B R\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)$is below SM in all bins at large and low-recoil.

Also BR of neutral mode:

$10^{7} \times B R\left(B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}\right)$	Standard Model	Experiment	Pull
$[0.1,2]$	0.62 ± 0.19	0.23 ± 0.11	+1.8
$[2,4]$	0.65 ± 0.21	0.37 ± 0.11	+1.2
$[4,6]$	0.64 ± 0.22	0.35 ± 0.10	+1.2
$[6,8]$	0.63 ± 0.23	0.54 ± 0.12	+0.4
$[15,19]$	0.91 ± 0.12	0.67 ± 0.12	+1.4

Brief flash on the anomalies

$10^{7} \times B R\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)$	Standard Model	Experiment	Pull
$[0.1,2]$	1.30 ± 1.00	1.14 ± 0.18	+0.2
$[2,4.3]$	0.85 ± 0.59	0.69 ± 0.12	+0.3
$[4.3,8.68]$	2.62 ± 4.92	2.15 ± 0.31	+0.1
$[16,19]$	1.66 ± 0.15	1.23 ± 0.20	+1.7
$10^{7} \times B R\left(B^{+} \rightarrow K^{*+} \mu^{+} \mu^{-}\right)$	Standard Model	Experiment	Pull
$[0.1,2]$	1.35 ± 1.05	1.12 ± 0.27	+0.2
$[2,4]$	0.80 ± 0.55	1.12 ± 0.32	-0.5
$[4,6]$	0.95 ± 0.70	0.50 ± 0.20	+0.6
$[6,8]$	1.17 ± 0.92	0.66 ± 0.22	+0.5
$[15,19]$	2.59 ± 0.24	1.60 ± 0.32	+2.5
$10^{7} \times B R\left(B_{s} \rightarrow \phi \mu^{+} \mu^{-}\right)$	Standard Model	Experiment	Pull
$[0.1,2]$.	1.81 ± 0.36	1.11 ± 0.16	+1.8
$[2 ., 5]$.	1.88 ± 0.32	0.77 ± 0.14	+3.2
$[5 ., 8]$.	2.25 ± 0.41	0.96 ± 0.15	$+\mathbf{2 . 9}$
$[15,18.8]$	2.20 ± 0.17	1.62 ± 0.20	$+\mathbf{2 . 2}$

Also $B R(B \rightarrow V \mu \mu)$ exhibit a systematic deficit with respect to SM , particularly $B_{s} \rightarrow \phi \mu \mu$.

- $B R\left(B \rightarrow X_{s} \gamma\right)$
- New theory update: $\mathcal{B}_{s \gamma}^{S M}=(3.36 \pm 0.23) \cdot 10^{-4} \quad($ Misiak et al 2015 $)$
- $+6.4 \%$ shift in central value w.r.t $2006 \rightarrow$ excellent agreement with WA
- $B R\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$
- New theory update (Bobeth et al 2013), New LHCb+CMS average (2014)
- $B R\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)$
- New theory update (Huber et al 2015)
- $B R\left(B \rightarrow K \mu^{+} \mu^{-}\right)$:
- LHCb 2014 + Lattice form factors at large q^{2} (Bouchard et al 2013, 2015)
- $B_{(s)} \rightarrow\left(K^{*}, \phi\right) \mu^{+} \mu^{-}$: BRs \& Angular Observables
- LHCb 2015 + Lattice form factors at large q^{2} (Horgan et al 2013)
- $B R\left(B \rightarrow K e^{+} e^{-}\right)_{[1,6]}\left(\right.$ or $\left.R_{K}\right)$ and $B \rightarrow K^{*} e^{+} e^{-}$at very low q^{2}
- LHCb 2014, 2015

Fit 2015: Statistical Approach

Frequentist approach:

$$
\chi^{2}\left(C_{i}\right)=\left[O_{\exp }-O_{\mathrm{th}}\left(C_{i}\right)\right]_{j}\left[\operatorname{Cov}^{-1}\right]_{j k}\left[O_{\exp }-O_{\mathrm{th}}\left(C_{i}\right)\right]_{k}
$$

- Cov $=\operatorname{Cov}^{\text {exp }}+\operatorname{Cov}^{\text {th }}$. We have Cov $^{\text {exp }}$ for the first time
- Calculate Cor $^{\text {th }}$: correlated multigaussian scan over all nuisance parameters
- Cov $^{\text {th }}$ depends on C_{i} : Must check this dependence

For the Fit:

- Minimise $\chi^{2} \rightarrow \chi_{\text {min }}^{2}=\chi^{2}\left(C_{i}^{0}\right) \quad$ (Best Fit Point $\left.=C_{i}^{0}\right)$
- Confidence level regions: $\chi^{2}\left(C_{i}\right)-\chi_{\text {min }}^{2}<\Delta \chi_{\sigma, n}$

Definition of Pull ${ }_{S M}$:

Pull ${ }_{S M}$ tells you how much in a model defined by a set of free Wilson coefficients C_{i} the value preferred by data for these Wilson coefficients is in tension with $C_{i}^{S M}$.

This is the first analysis: - using the basis of optimized observables ($B \rightarrow K^{*} \mu \mu$ and $B_{s} \rightarrow \phi \mu \mu$) - using the full dataset of $3 \mathrm{fb}^{-1}$:

Coefficient $\mathcal{C}_{i}^{N P}=\mathcal{C}_{i}-\mathcal{C}_{i}^{S M}$	Best fit	1σ	3σ	Pull
$\mathcal{C}_{7}^{\mathrm{NP}}$	-0.02	$[-0.04,-0.00]$	$[-0.07,0.03]$	1.2
$\mathcal{C}_{9}^{\mathrm{NP}}$	-1.09	$[-1.29,-0.87]$	$[-1.67,-0.39]$	$4.5 \Leftarrow$
$\mathcal{C}_{10}^{\mathrm{NP}}$	0.56	$[0.32,0.81]$	$[-0.12,1.36]$	2.5
$\mathcal{C}_{7^{\prime}}^{\mathrm{NP}}$	0.02	$[-0.01,0.04]$	$[-0.06,0.09]$	0.6
$\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$	0.46	$[0.18,0.74]$	$[-0.36,1.31]$	1.7
$\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}$	-0.25	$[-0.44,-0.06]$	$[-0.82,0.31]$	1.3
$\mathcal{C}_{9}^{\mathrm{NP}}=\mathcal{C}_{10}^{\mathrm{NP}}$	-0.22	$[-0.40,-0.02]$	$[-0.74,0.50]$	1.1
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}$	-0.68	$[-0.85,-0.50]$	$[-1.22,-0.18]$	$4.2 \Leftarrow$
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$	-1.06	$[-1.25,-0.86]$	$[-1.60,-0.40]$	$4.8 \quad$ (low recoil)
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}$				
$=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}=-\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}$	-0.69	$[-0.89,-0.51]$	$[-1.37,-0.16]$	4.1

Impact on the anomalies of a contribution from NP $C_{9}^{N P}=-1.1$

(1),(2) and (3) use $3 \mathrm{fb}^{-1}$ dataset and latest theory prediction for SM (gray) and $\mathrm{NP}\left(C_{9}^{N P}=-1.1\right)$. All anomalies and tensions gets solved or alleviated with $C_{9}^{N P} \sim \mathcal{O}(-1)$

- $C_{9}^{N P}$ always play a dominant role
- All 2D scenarios above 4σ are quite indistinguishable. We have done a systematic work to check what are the most relevant Wilson Coefficients to explain all deviations, by allowing progressively different WC to get NP contributions and compare the pulls.

Coefficient	1σ	2σ	3σ	
$\mathcal{C}_{7}^{\mathrm{NP}}$	$[-0.02,0.03]$	$[-0.04,0.04]$	$[-0.05,0.08]$	• no preference
$\mathcal{C}_{9}^{\mathrm{NP}}$	$[-1.4,-1.0]$	$[-1.7,-0.7]$	$[-2.2,-0.4]$	• negative
$\mathcal{C}_{10}^{\mathrm{NP}}$	$[-0.0,0.9]$	$[-0.3,1.3]$	$[-0.5,2.0]$	• positive
$\mathcal{C}_{7^{\prime}}^{\mathrm{NP}}$	$[-0.02,0.03]$	$[-0.04,0.06]$	$[-0.06,0.07]$	• no preference
$\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$	$[0.3,1.8]$	$[-0.5,2.7]$	$[-1.3,3.7]$	• positive
$\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}$	$[-0.3,0.9]$	$[-0.7,1.3]$	$[-1.0,1.6]$	$\bullet \sim$ positive

- C_{9} is consistent with SM only above 3σ
- All other are consistent with zero at 1σ except for C_{9}^{\prime} (at 2σ).
- The Pull ${ }_{S M}$ for the 6D fit is 3.6σ. (See plots in Back-up slides)

Impact of $B \rightarrow \mathrm{Ke}^{+} \mathrm{e}^{-}$

under hypothesis of maximal

Lepton Flavour Universal Violation

1D-Coefficient	Best fit	1σ	3σ	Pull
$\mathcal{C}_{9}{ }_{9}$				
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}$	-1.11	$[-1.31,-0.90]$	$[-1.67,-0.46]$	$\mathbf{4 . 5} \rightarrow \mathbf{4 . 9}$
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$	-0.65	$[-0.80,-0.50]$	$[-1.13,-0.21]$	$\mathbf{4 . 2} \rightarrow \mathbf{4 . 6}$
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}=-\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}$	-0.66	$[-0.84,-0.50]$	$[-1.25,-0.20]$	$\mathbf{4 . 1} \rightarrow \mathbf{4 . 5}$

2D-Coefficient	Best Fit Point	Pull ${ }_{\text {SM }}$	The strong correlations among form factors of $B \rightarrow K \mu \mu$ and $B \rightarrow$ Kee assuming no NP in $B \rightarrow$ Kee enhances the NP evidence in muons.
$\left(C_{7}^{\mathrm{NP}}, C_{9}^{\mathrm{NP}}\right)$	(-0.00, -1.10)	$4.1 \rightarrow 4.6$	
$\left(C_{9}^{\mathrm{NP}}, C_{10}^{\mathrm{NP}}\right)$	(-1.06, 0.33)	$4.3 \rightarrow 4.8$	
$\left(C_{9}^{\mathrm{NP}}, C_{7^{\prime}}^{\mathrm{NP}}\right)$	$(-1.16,0.02)$	$4.2 \rightarrow 4.7$	
$\left(C_{9}^{\mathrm{NP}}, C_{9^{\prime}}^{\mathrm{NP}}\right)$	$(-1.15,0.64)$	$4.5 \rightarrow 4.9$	Notice that we use all bins in $B \rightarrow K \mu \mu$ while R_{K} is only [1,6]. All theory correlations included.
$\left(C_{9}^{\mathrm{NP}}, C_{10^{\prime}}^{\mathrm{NP}}\right)$	$(-1.23,-0.29)$	$4.5 \rightarrow 4.9$	
$\left(C_{9}^{\mathrm{NP}}=-C_{9^{\prime}}^{\mathrm{NP}}, C_{10}^{\mathrm{NP}}=C_{10^{\prime}}^{\mathrm{NP}}\right)$	$(-1.18,0.38)$	$4.7 \rightarrow 5.1$	
$\left(C_{9}^{\mathrm{NP}}=-C_{9^{\prime}}^{\mathrm{NP}}, C_{10}^{\mathrm{NP}}=-C_{10^{\prime}}^{\mathrm{NP}}\right)$	$(-1.11,0.04)$	4.5	- Only scenarios explaining R_{K} get an extra enhancement of $+0.4-0.5 \sigma$
$\left(C_{9}^{\mathrm{NP}}=C_{9^{\prime}}^{\mathrm{NP}}, C_{10}^{\mathrm{NP}}=C_{10^{\prime}}^{\mathrm{NP}}\right)$	$(-0.64,-0.11)$	$3.9 \rightarrow 4.3$	
$\left(C_{9}^{\mathrm{NP}}=-C_{10}^{\mathrm{NP}}, C_{9^{\prime}}^{\mathrm{NP}}=C_{10^{\prime}}^{\mathrm{NP}}\right)$	(-0.69, 0.27)	$3.8 \rightarrow 4.2$	

Fits considering Lepton Flavour (non-) Universality

- If NP-LFUV is assumed, NP may enter both $b \rightarrow$ see and $b \rightarrow s \mu \mu$ decays with different values.
\Rightarrow For each scenario, we see that there is no clear indication of a NP contribution in the electron sector, whereas one has clearly a non-vanishing contribution for the muon sector, with a deviation from the Lepton Flavour Universality line.

	$R_{K}[1,6]$	$R_{K^{*}}[1.1,6]$	$R_{\phi}[1.1,6]$
SM	1.00 ± 0.01	$1.00 \pm 0.01[1.00 \pm 0.01]$	1.00 ± 0.01
$\mathcal{C}_{9}^{\mathrm{NP}}=-1.11$	0.79 ± 0.01	$0.87 \pm 0.08[0.84 \pm 0.02]$	0.84 ± 0.02
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}=-1.09$	1.00 ± 0.01	$0.79 \pm 0.14[0.74 \pm 0.04]$	0.74 ± 0.03
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}=-0.69$	0.67 ± 0.01	$0.71 \pm 0.03[0.69 \pm 0.01]$	0.69 ± 0.01
$\mathcal{C}_{9}^{\mathrm{NP}}=-1.15, \mathcal{C}_{9^{\prime}}^{\mathrm{NP}}=0.77$	0.91 ± 0.01	$0.80 \pm 0.12[0.76 \pm 0.03]$	0.76 ± 0.03
$\mathcal{C}_{9}^{\mathrm{NP}}=-1.16, \mathcal{C}_{10}^{\mathrm{NP}}=0.35$	0.71 ± 0.01	$0.78 \pm 0.07[0.75 \pm 0.02]$	0.76 ± 0.01
$\mathcal{C}_{9}^{\mathrm{NP}}=-1.23, \mathcal{C}_{10^{\prime}}^{\mathrm{NP}}=-0.38$	0.87 ± 0.01	$0.79 \pm 0.11[0.75 \pm 0.02]$	0.76 ± 0.02
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}=-1.14 \mathcal{C}_{10}^{\mathrm{NP}}=-\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}=0.04$	1.00 ± 0.01	$0.78 \pm 0.13[0.74 \pm 0.04]$	0.74 ± 0.03
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}=-1.17 \mathcal{C}_{10}^{\mathrm{NP}}=\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}=0.26$	0.88 ± 0.01	$0.76 \pm 0.12[0.71 \pm 0.04]$	0.71 ± 0.03

Table: Predictions for $R_{K}, R_{K^{*}}, R_{\phi}$ at the best fit point of different scenarios of interest, assuming that NP enters only in the muon sector, and using the inputs of our reference fit , in particular the KMPW form factors for $B \rightarrow K$ and $B \rightarrow K^{*}$, and $B S Z$ for $B_{s} \rightarrow \phi$. In $B \rightarrow K^{*}$, we indicate in brackets predictions using the form factors in $B S Z$.

Relative ordering between the three may help to disentangle some scenarios from others.

How much the fit results depend on the details?

Figure: We show the 3σ regions allowed using form factors in BSZ'15 in the full form factor approach (long-dashed blue) compared to our reference fit with the soft form factor approach (red, with 1,2,3 σ contours).

- The results of the fit using (IQCDF-KMPW) or (Full-FF-BSZ) and/or different set of observables are perfectly consistent once all correlations are included. But the individual observables...

anomaly [4,6] bin		P_{5}^{\prime} error SIZE [pull]
S S_{5} error SIZE [pull]		
Full-FF-BSZ (1503.05534)	$8.6 \%[2.7 \sigma]$	$12 \%[2.0 \sigma]$
IQCDF-KMPW (1510.04239)	$10 \%[2.9 \sigma]$	$40 \%[1.2 \sigma]$

Theoretical description of $B \rightarrow K^{*} \mu \mu$ in a nutshell:

systematic treatment of hadronic uncertainties

and deconstruction of incorrect criticisms

Discussion of Criticism from 3 papers:
Lyon-Zwicky, arXiv: 1406.0566 (LZ'14)
Jaeger-Camalich, arXiv: 1412.3183 (JC'14)
Ciuchini-Silvestrini-Valli et al. arXiv: 1512.07157 (CFFMPSV'15)

Theoretical description of $B \rightarrow K^{*} \ell^{+} \ell^{-} @$ low- q^{2}

Improved-QCDF approach: QCDF+exploit symmetry relations at large-recoil (limit) among FF:

$$
\begin{gathered}
\frac{m_{B}}{m_{B}+m_{K^{*}}} \mathbf{V}\left(\mathbf{q}^{2}\right)=\frac{m_{B}+m_{K^{*}}}{2 E} \mathbf{A}_{1}\left(\mathbf{q}^{2}\right)=\mathbf{T}_{1}\left(\mathbf{q}^{2}\right)=\frac{m_{B}}{2 E} \mathbf{T}_{2}\left(\mathbf{q}^{2}\right)=\xi_{\perp}(E) \\
\frac{m_{K^{*}}}{E} \mathbf{A}_{0}\left(\mathbf{q}^{2}\right)=\frac{m_{B}+m_{K^{*}}}{2 E} \mathbf{A}_{1}\left(\mathbf{q}^{2}\right)-\frac{m_{B}-m_{K^{*}}}{m_{B}} \mathbf{A}_{2}\left(\mathbf{q}^{2}\right)=\frac{m_{B}}{2 E} \mathbf{T}_{2}\left(\mathbf{q}^{2}\right)-\mathbf{T}_{3}\left(\mathbf{q}^{2}\right)=\xi_{\|}(E)
\end{gathered}
$$

Our approach is completed with 4 types of corrections. First two are related to FF decomposition:

$$
\mathbf{F}\left(\mathbf{q}^{2}\right)=F^{\infty}\left(\xi_{\perp}, \xi_{\|}\right)+\Delta F^{\alpha_{s}}\left(q^{2}\right)+\Delta F^{\wedge}\left(q^{2}\right)
$$

- I. $\Delta F^{\alpha_{s}}\left(q^{2}\right)$: Known Factorizable α_{s} breaking corrections at NLO from QCDF.
- II. $\Delta F^{\wedge}\left(q^{2}\right)$: Factorizable power corrections (using a systematic procedure for each FF)
- III. Known Non-factorizable α_{s} corrections: spectator hard-scattering + 4-quark matrix elements \& O_{8}.

$$
\left\langle\ell^{+} \ell^{-} \bar{K}_{a}^{*}\right| H_{\text {eff }}|\bar{B}\rangle=\mathcal{C}_{a} \xi_{a}+\Phi_{B} \otimes T_{a} \otimes \Phi_{K^{*}} \text { with } a=\perp, \|
$$

- IV. Non-factorizable power corrections including charm-quark loops.

Non-factorizable power corrections

- Non-factorizable power corrections (amplitudes): subleading new unknown non-perturbative. BEYOND SCET/QCDF at leading power in $1 / m_{b}$. Multiply each amplitude $i=0, \perp, \|$ with a complex q^{2}-dependent factor. $\mathcal{T}_{i}^{\text {had }} \rightarrow\left(1+r_{i}\left(q^{2}\right)\right) \mathcal{T}_{i}^{\text {had }}$ with $\mathcal{T}_{i}^{\text {had }}=\left.\mathcal{T}_{i}\right|_{c_{7}^{(\prime)} \rightarrow 0}$ entering $\left\langle K^{*} \gamma^{*}\right| H_{\text {eff }}|B\rangle$.
- Charm-loops: At large-recoil two type of contributions: $\Delta C_{9}^{B K^{*}}=\delta C_{9, \text { pert }}^{B K\left({ }^{*}\right)}+\mathbf{s}_{\mathbf{i}} \delta C_{9, \text { non pert }}^{B K(*), i}$
- Short distance (hard-gluons): $\delta \mathbf{C}_{9, \text { pert }}^{B K\left({ }^{*}\right)}$
- LO included in $C_{9} \rightarrow C_{9}+Y\left(q^{2}\right)$
- higher-order corrections via QCDF/HQET.
- Long distance (soft-gluons): $\delta \mathbf{C}_{9, \text { non pert }}^{\mathrm{BK}\left({ }^{*}\right) \mathrm{i}}$
- Only existing computation KMPW'10 using LCSR.
- Partial computation yields $\Delta C_{9}^{B K^{*}}>0\left(s_{i}=1\right) \Rightarrow$ enlarges the anomaly.

We obtain the LD from KMPW AND allow FOR ANY SIGN $s_{i}=0 \pm 1$

Criticism 1: Factorizable Power Corrections ΔF^{\wedge} give a huge contribution?

What are Factorizable power corrections and how they emerge?

Appear when expressing the full form factor in a soft form factor piece + corrections:

$$
F^{\text {full }}\left(q^{2}\right)=F^{\text {soft }}\left(\xi_{\perp, \|}\left(q^{2}\right)\right)+\Delta F^{\alpha_{s}}\left(q^{2}\right)+\Delta F^{\wedge} \text { with } \Delta F^{\wedge}=a_{F}+b_{F} \frac{q^{2}}{m_{B}^{2}}+c_{F} \frac{q^{4}}{m_{B}^{4}}
$$

How one can obtain power corrections?
(DHMV'14)
ΔF^{\wedge} is obtained from a 2 nd order fit in $q^{2} / m_{B}^{2} \Rightarrow$ central values a_{F}, b_{F}, c_{F}.
Errors are taken uncorrelated to be $\mathcal{O}\left(\Lambda / m_{b}\right) \times \mathrm{FF} \simeq 0.1 \mathrm{FF}$.
Why? to minimize sensitivity/dependence on FF computational details.

	$\hat{a}_{F}^{(1)}$	$\hat{b}_{F}^{(1)}$	$\hat{c}_{F}^{(1)}$	$r\left(0 \mathrm{GeV}^{2}\right)$	$r\left(4 \mathrm{GeV}^{2}\right)$	$r\left(8 \mathrm{GeV}^{2}\right)$
$A_{1}(\mathrm{KMPW})$	-0.01 ± 0.03	-0.06 ± 0.02	0.16 ± 0.02	5%	6%	5%
$A_{1}(\mathrm{BZ})$	-0.01 ± 0.03	0.04 ± 0.02	0.08 ± 0.02	3%	1%	3%

$r=\left(a_{F}+b_{F} q^{2} / m_{B}^{2}+c_{F} q^{4} / m_{B}^{4}\right) / F F\left(q^{2}\right)$ is the percentage of p.c. found to be $\leq 10 \%$
\rightarrow Later on JC'14 followed same strategy and considered also uncorrelated errors but central values were set to zero.

What do they missed in JC'14?

In JC'14: It is implicitly assumed that the prediction of an observable like P_{5}^{\prime} is scheme independent.
Scheme choice here means the way $\xi_{\perp, \|}$ are fixed to all orders in terms of full FF. Example:

$$
\xi_{\perp}^{(1)}\left(\mathbf{q}^{2}\right) \equiv \frac{\mathbf{m}_{\mathbf{B}}}{\mathbf{m}_{\mathbf{B}}+\mathbf{m}_{\mathbf{K}^{*}}} \mathbf{V}\left(\mathbf{q}^{2}\right) \quad \xi_{\|}^{(\mathbf{1})}\left(\mathbf{q}^{2}\right) \equiv \frac{\mathbf{m}_{\mathbf{B}}+\mathbf{m}_{\mathbf{K}^{*}}}{\mathbf{2} \mathbf{E}} \mathbf{A}_{1}\left(\mathbf{q}^{2}\right)-\frac{\mathbf{m}_{\mathbf{B}}-\mathbf{m}_{\mathbf{K}^{*}}}{\mathbf{m}_{\mathbf{B}}} \mathbf{A}_{\mathbf{2}}\left(\mathbf{q}^{2}\right), \text { (Beneke et al. 05) }
$$

or

$$
\xi_{\perp}^{(2)}\left(\mathbf{q}^{2}\right) \equiv \mathbf{T}_{1}\left(\mathbf{q}^{2}\right), \quad \xi_{\|}^{(2)}\left(\mathbf{q}^{2}\right) \equiv \frac{\mathbf{m}_{\mathbf{K}^{*}}}{\mathbf{E}} \mathbf{A}_{0}\left(\mathbf{q}^{2}\right) . \quad \text { (old Beneke et al. 01) }
$$

ALERT: THIS is ONLY TRUE if correlations are included.

Illustrative example (using for instance BSZ):

$\left\langle P_{5}^{\prime}\right\rangle_{[4,6]}$	error of f.f.+p.c. scheme-1 in transversity basis DHMV'14	error of f.f.+p.c. scheme-2 in helicity basis JC'14
NO correlations among errors of p.c. (hyp. 10\%)	± 0.05	± 0.12
WITH correlations among errors of p.c.	± 0.03	± 0.03

FULL FF scheme indep. ± 0.03
Conclusions:

- If p.c. are taken uncorrelated to reduce the sensitivity to details of FF computation, which is fine, not any arbritary scheme choice is appropriate.

Example: A bad choice like in JC'14 inflated artificially the errors $\mathbf{x} 4$ above.

Criticism 2: A huge charm-loop or unknown non-factorizable correction?

Two attempts:
Attempt 1 (Lyon, Zwicky'14 unpublished):

- Using $e^{+} e^{-} \rightarrow$ hadrons to build a model of $c \bar{c}$ resonances at low-recoil in $B \rightarrow K \mu \mu$.

Conceptual problem: extrapolate result at large-recoil and assume it holds the same for $B \rightarrow K^{*} \mu \mu$.
\Rightarrow Interesting observation: Phase of helicity amplitudes $e^{i \delta_{J / \psi K^{*}}}$ from $\delta_{J / \psi K^{*}} \simeq 0$ (KMPW) to π \rightarrow we introduce s_{i}.

Attempt 2 (Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli'15-CFFMPSV):

- Introduce a fully arbitrary parametrization for non-factorizable power correction:

$$
H_{\lambda} \rightarrow H_{\lambda}+h_{\lambda} \text { where } h_{\lambda}=h_{\lambda}^{(0)}+h_{\lambda}^{(1)} q^{2}+h_{\lambda}^{(2)} q^{4} \quad \text { and } \quad h_{\lambda}^{(0)} \rightarrow C_{7}^{N P}, h_{\lambda}^{(1)} \rightarrow C_{9}^{N P}
$$

with $(\lambda=0, \pm)$
(copied from JC'14).
Fundamental problems: complete lack of theory input/output \Rightarrow no predictivity with 18 free parameters (any shape). Specific problems...
(CAUTION: They only considered $B \rightarrow K^{*} \mu \mu$ at large-recoil)

1. BOTH LZ'14 and CFFMPSV' 15 exhibit the same uptrend behaviour:

Predict $\left\langle P_{5}^{\prime}\right\rangle_{[6,8]}$ to be above $\left\langle P_{5}^{\prime}\right\rangle_{[4,6]}$ but data favours the opposite (more significance needed)

Lyon-Zwicky'14

Different hypothesis (colors RBG)

Ciuchini-Silvestrini-Valli et al.'15

From Table 6 of predictions'

Data (blue) and DHMV (red).

Descending trend of data.
2. If the answer would be unknown $h_{\lambda}^{(i)}$ you cannot explain many data, while $C_{9}^{N P}=-1.1$ can:

- nor R_{K} (solved with $C_{9}^{N P}=-1.1$) neither any future LFVU observable like $R_{K^{*}}$ due to charm universality.
- any tiny tension in the low-recoil region of $B^{0} \rightarrow K^{* 0} \mu \mu(1.7 \rightarrow 0.3 \sigma), B^{+} \rightarrow K^{*+} \mu \mu(2.5 \rightarrow 1.2 \sigma)$, $B_{s} \rightarrow \phi \mu \mu(2.3 \rightarrow 0.5 \sigma)$ cannot be explained.
- Also the old bin $[2,4.3]$ of P_{2} of 2013 is difficult to explain by charm.

Cross check: Bin by Bin analysis of C_{9} in three scenarios

Result of bin-by-bin analysis of C_{9} in 3 scenarios.

- Notice the excellent agreement of bins [2,5], [4,6], [5,8].
Strong argument in favour of including the $[5,8]$ region-bin.
- First bin is afflicted by lepton-mass effects. (see Back-up slides)
- We do not find indication for a q^{2}-dependence in C_{9} neither in the plots nor in a 6D fit adding $a^{i}+b^{i} s$ to $C_{9}^{\text {eff }}$ for $i=K^{*}, K, \phi$.
\rightarrow disfavours again charm explanation.
- 2nd and 3rd plots test if you allow for NP in other WC the agreement of C_{9} bin by bin improves as compared to 1 st plot.
- $\tilde{g}=\Delta C_{9}^{\text {non pert. }} /\left(2 C_{1}\right)$
- They force the fit (red points) to agree on the very low- q^{2} with KMPW. This has two problems:
- At very low- q^{2} there are other problems they forgot (lepton mass effects).
- By forcing the fit to agree at very low- q^{2} can induce an artificial tilt of your fit.
- More interestingly the blue points where KMPW is not imposed is perfectly compatible with
$C_{9}-C_{9}^{S M} \simeq$ constant+KMPW similar to us!!.
So what is this constant C_{9}^{NP} or $h_{\lambda}^{(1)}$?

Specific problems of CFFMPSV' 15

Contradictory statements:
3. "No deviation is present once all the theoretical uncertainties are taken into account".
\Rightarrow Indeed they have a $(\mathbf{2 . 7} \sigma)$ deviation in S_{4}, a fully SM-like observable for us (us and also BSZ find good agreement with SM in all bins! See table from DHMV'15)

$S_{4}\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)$	Standard Model	Experiment	Pull
$[0.1,0.98]$	-0.08 ± 0.05	-0.08 ± 0.07	-0.0
$[1.1,2.5]$	-0.01 ± 0.03	0.08 ± 0.11	-0.8
$[2.5,4]$	0.11 ± 0.07	0.23 ± 0.14	-0.8
$[4,6]$	0.18 ± 0.08	0.22 ± 0.09	-0.3
$[6,8]$	0.22 ± 0.07	0.30 ± 0.07	-0.8
$[15,19]$	0.30 ± 0.01	0.28 ± 0.04	+0.5

4. Symmetries transformations of $A_{\perp, \|, 0}$ led to a consistency relation: [Serra-Matias'14]

$$
P_{2}^{r e l}=\frac{1}{2}\left[P_{4}^{\prime} P_{5}^{\prime}+\delta_{a}+\frac{1}{\beta} \sqrt{\left(-1+P_{1}+P_{4}^{\prime 2}\right)\left(-1-P_{1}+\beta^{2} P_{5}^{\prime 2}\right)+\delta_{b}}\right] \quad P_{i} \rightarrow\left\langle P_{i}\right\rangle(\Delta)
$$

where δ_{a} and δ_{b} are function of product of tiny $P_{6}^{\prime}, P_{8}^{\prime}, P_{3}$.
This must hold independently of any crazy non-factorizable, factorizable, or New Physics (with no weak phases $P_{i}^{C P}=0$ or new scalars) that is included inside the H_{λ} (or $A_{\perp, \|, 0}$)

Example: $\quad \Rightarrow$ Using theory predictions (DHMV'15) for bin [4,6] one has:

$$
\left\langle P_{1}\right\rangle=0.03 \quad\left\langle P_{4}^{\prime}\right\rangle=+0.82 \quad\left\langle P_{5}^{\prime}\right\rangle=-0.82 \quad\left\langle P_{2}\right\rangle=-0.18
$$

consistency relation $\Rightarrow\left\langle P_{2}\right\rangle^{\text {rel }}=-0.17(\Delta=0.01$ from binning $)$. Perfect agreement.
The previous relation can be rewritten in terms of $A_{\mathrm{FB}}=f\left(F_{L}, S_{i}\right)$:

		$C F F M P S V_{\text {predictions }}$	CFFMPSV ${ }_{\text {full }}$ fit	SM-BSZ ($\delta_{i}=0$)	SM-DHMV
[4, 6]	$\left\langle A_{\text {FB }}\right\rangle^{\text {rel }}$	-0.14 ± 0.04	-0.16 ± 0.03	$+0.11 \pm 0.05$	$+0.05 \pm 0.19$
	$\left\langle A_{\text {FB }}\right\rangle$	$+0.05 \pm 0.04 \Rightarrow 3.4 \sigma$	$+0.04 \pm 0.03 \Rightarrow 4.7 \sigma$	$+0.12 \pm 0.04 \Rightarrow 0.2 \sigma$	$+0.08 \pm 0.11 \Rightarrow 0.1 \sigma$
[6, 8]	$\begin{aligned} & \left\langle A_{\mathrm{FB}}\right\rangle^{\text {rel }} \\ & \left\langle A_{\mathrm{FB}}\right\rangle \end{aligned}$	$\begin{aligned} & -0.27 \pm 0.08 \\ & +0.12 \pm 0.08 \Rightarrow 3.4 \sigma \end{aligned}$	$\begin{aligned} & -0.15 \pm 0.05 \\ & +0.13 \pm 0.03 \Rightarrow 4.8 \sigma \end{aligned}$	--	$\begin{aligned} & +0.17 \pm 0.18 \\ & +0.21 \pm 0.21 \Rightarrow 0.1 \sigma \end{aligned}$

This table is computed assuming that central values of all predictions of observables correspond to the same set of theory parameters. No correlations included yet here.

Summary: SM-BSZ and SM-DHMV present excellent consistency. In CFFMPSV the internal consistency gets reduced in the most interesting bins, and unexpectedly even more in the full-fit.

A glimpse into the future: looking at C_{10}

Having established with high significance a New Physics contribution to $C_{9}^{N P}$ what about $C_{10}^{N P}$?
$\mathcal{B}_{B_{s} \rightarrow \mu \mu}$ is an excellent observable to measure $C_{10}-C_{10}^{\prime}$, but this can be nicely complemented:
From large-recoil expression:

$$
P_{2}=\frac{1}{\mathcal{N}}\left\{C_{10} s\left(2 C_{7}^{\text {eff }} m_{b} m_{\mathbf{B}}+\operatorname{Re}\left[C_{9}^{\text {eff }}\right] s\right)-C_{10}^{\prime} s\left(2 C_{7}^{\prime} m_{b} m_{B}+C_{9}^{\prime \text { eff }} s\right)\right\}
$$

where

$$
\begin{aligned}
\mathcal{N}= & +4\left(C_{7}^{\text {efft } 2}+C_{7}^{\text {'eff } 2}\right) m_{b}^{2} m_{B}^{2} \\
& +4\left(C_{7}^{\text {eff }} \operatorname{Re}\left[C_{9}^{\text {eff }}\right]+C_{7}^{\text {eff }} C_{9}^{\text {efff }}\right) m_{b} m_{B} s+\left(\left|C_{9}^{\text {eff }}\right|^{2}+C_{10}^{2}+C_{9}^{\text {eff2 } 2}+C_{10}^{\prime 2}\right) s^{2}
\end{aligned}
$$

In CDHMV'16 we point that $\mathbf{P}_{\mathbf{2}}$ in the first bin $[\mathbf{0 . 1 , 0 . 9 8]}$ exhibits unique properties:

- Large sensitivity to $C_{10}^{N P}$ and extra shielding against C_{9} in a very safe region.
- Sensitivity to any unknown non-factorizable p.c. hidden in $C_{9}^{\text {eff }}$ is strongly q^{2}-suppressed.

A $C_{10}^{N P}>0$ improves agreement between data and SM
Subtilities related to lepton masses have to be considered!

Figure: Separate fits to $b \rightarrow \boldsymbol{s} \gamma$ (blue) and $b \rightarrow$ see observables at very low q^{2} (green). The combined fit to both sets of data is shown with dashed contours (1,2,3 σ regions). The result of the global fit to all $b \rightarrow \boldsymbol{s} \gamma, b \rightarrow s \ell \ell$ data is shown by the red contours (1,2,3 σ regions). It is assumed that all the other Wilson coefficients have their SM values, except for the plot on the right, where $\mathcal{C}_{9 \mu}^{N P}=-1.1$.

- The global analysis of $b \rightarrow s \ell^{+} \ell^{-}$with $3 \mathrm{fb}^{-1}$ dataset shows that the solution we proposed in 2013 to solve the anomaly with a contribution $\mathrm{C}_{9}^{\mathrm{NP}} \simeq-1$ is confirmed and reinforced.
- The fit result is very robust and does not show a significant dependence nor on the theory approach used neither on the observables used once correlations are taken into account.
\Rightarrow IQCDF and FULL-FF are nicely complementary methods.
- We have shown that the treatment of uncertainties entering the observables in $B \rightarrow K^{*} \mu \mu$ is indeed under excellent control and the alternative explanations to New Physics are indeed not in very solid ground. We have proven (redressing the reassessing...) :
- Factorizable p.c.: While using power corrections with uncorrelated errors is perfectly fine we have shown that an inadequate scheme's choice (JC'14) inflates artificially errors.
- Charm-loops: They all predict bin $[6,8]$ above [4,6] against data. They cannot explain LFVU. Also fundamental consistency problems detected.
- Near future? Maybe C_{10}^{NP} or the prime coefficients can become significant soon. We pointed out an observable particularly clean in this respect.

Thank you

Back-up slides

What do they missed in JC'14?

Statement 2: In JC'14 P_{5}^{\prime} is argued to be "accidentally" scheme independent even with uncorrelated p.c: In helicity basis we find:

$$
\begin{aligned}
P_{5}^{\prime}=\left.P_{5}^{\prime}\right|_{\infty}[1 & +\frac{a V_{-}-\mathrm{a} T_{-}}{\xi_{\perp}} \frac{m_{B}}{|k|} \frac{m_{B}^{2}}{q^{2}} C_{7}^{\mathrm{eff}} \frac{C_{9, \perp} C_{9, \|}-C_{10}^{2}}{\left(C_{9, \perp}^{2}+C_{10}^{2}\right)\left(C_{9, \perp}+C_{9, \|}\right)}-\frac{\mathrm{aV}_{+}}{\xi_{\perp}} \frac{2 \mathrm{C}_{9, \|}}{\mathrm{C}_{9, \perp}+\mathrm{C}_{9, \|}} \\
& \left.+\frac{a V_{0}-a T_{0}}{\xi_{\|}} 2 C_{7}^{\mathrm{eff}} \frac{C_{9, \perp} C_{9, \|}-C_{10}^{2}}{\left(C_{9, \|}^{2}+C_{10}^{2}\right)\left(C_{9, \perp}+C_{9, \|}\right)}+\mathcal{O}\left(\frac{m_{K^{*}}^{2}}{m_{B}^{2}}, \frac{q^{2}}{m_{B}^{2}}\right)\right]
\end{aligned}
$$

OK with $\mathrm{JC}^{\prime} 14$ except for the missing term aV_{+}. Choosing a scheme with aV_{-}or aT_{-}is equivalent.

ALERT: Only apparently scheme independent in helicity basis for a subset of schemes!

Counterexample: In transversity basis becomes obvious that the choice of scheme matters

$$
P_{5}^{\prime}=\left.P_{5}^{\prime}\right|_{\infty}\left[1+\frac{\mathrm{aV}}{\xi_{\perp}} \frac{C_{9, \|}}{C_{9, \perp}+C_{9, \|}}+\frac{\mathrm{aV}-2 \mathrm{aT}_{1}}{\xi_{\perp}} \frac{m_{B}^{2}}{q^{2}} C_{7}^{\text {eff }} \frac{C_{9, \perp} C_{9, \|}-C_{10}^{2}}{\left(C_{9, \perp}^{2}+C_{10}^{2}\right)\left(C_{9, \perp}+C_{9, \|}\right)}-\frac{a A_{1}}{\xi_{\perp}} \frac{C_{9, \perp} C_{9, \|}+C_{10}^{2}}{2\left(C_{9, \perp}^{2}+C_{10}^{2}\right)}+\ldots\right.
$$

The weights of $\mathrm{aV} \& \mathrm{aT}_{1}$ are MANIFESTLY different: $P_{5}^{\prime\left(q^{2}=6\right)}=\left.P_{5}^{\prime}\right|_{\infty}\left(1+\left[0.82 \mathrm{aV}-\mathbf{0 . 2 4} \mathrm{a}_{1}\right] / \xi_{\perp}(6)+\ldots\right.$

$$
\xi_{\perp}^{(1)}\left(q^{2}\right) \equiv \frac{m_{B}}{m_{B}+m_{K^{*}}} V\left(q^{2}\right) \quad \Rightarrow \mathrm{aV}=0 \quad \text { or } \quad \xi_{\perp}^{(2)}\left(q^{2}\right) \equiv T_{1}\left(q^{2}\right) \quad \Rightarrow \mathrm{aT}_{1}=0
$$

Point also completely missed in CFFMPSV!!

$B \rightarrow K^{*} \ell^{+} \ell^{-}:$Impact of long-distance cc̄ loops - DHMV

Inspired by Khodjamirian et al (KMPW): $C_{9} \rightarrow C_{9}+s_{i} \delta C_{9}^{\mathrm{LD}(i)}\left(q^{2}\right)$
Notice that KMPW implies $s_{i}=1$, but we vary it independently $s_{i}=0 \pm 1, i=0, \perp, \|$ (Zwicky)

$$
\begin{aligned}
\delta C_{9}^{\mathrm{LD},(\perp, \|)}\left(q^{2}\right) & =\frac{a^{(\perp, \|)}+b^{(\perp, \|)} q^{2}\left[c^{(\perp, \|)}-q^{2}\right]}{b^{(\perp, \|)} q^{2}\left[c^{(\perp, \|)}-q^{2}\right]} \\
\delta C_{9}^{\mathrm{LD}, 0}\left(q^{2}\right) & =\frac{a^{0}+b^{0}\left[q^{2}+s_{0}\right]\left[c^{0}-q^{2}\right]}{b^{0}\left[q^{2}+s_{0}\right]\left[c^{0}-q^{2}\right]}
\end{aligned}
$$

Obtaining from fitting the long-distance part to KMPW.

The distribution (massless case) including the S-wave and normalized to $\Gamma_{\text {full }}^{\prime}$:

$$
\begin{aligned}
& \frac{1}{\Gamma_{\text {full }}^{\prime}} \frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{K} d \cos \theta_{l} d \phi}=\frac{9}{32 \pi}\left[\frac{3}{4} \mathrm{~F}_{\mathrm{T}} \sin ^{2} \theta_{K}+\mathrm{F}_{\mathrm{L}} \cos ^{2} \theta_{K}+\left(\frac{1}{4} \mathrm{~F}_{\mathrm{T}} \sin ^{2} \theta_{K}-\mathrm{F}_{\mathrm{L}} \cos ^{2} \theta_{K}\right) \cos 2 \theta_{l}\right. \\
& +\sqrt{\mathrm{F}_{\mathrm{T}} \mathrm{~F}_{\mathrm{L}}}\left(\frac{1}{2} \mathrm{P}_{4}^{\prime} \sin 2 \theta_{K} \sin 2 \theta_{l} \cos \phi+\mathrm{P}_{5}^{\prime} \sin 2 \theta_{K} \sin \theta_{l} \cos \phi\right)+2 \mathrm{P}_{2} \mathrm{~F}_{\mathrm{T}} \sin ^{2} \theta_{K} \cos \theta_{l}+\frac{1}{2} \mathrm{P}_{1} \mathrm{~F}_{\mathrm{T}} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \cos 2 \phi \\
& \left.-\sqrt{\mathrm{F}_{\mathrm{T}} \mathrm{~F}_{\mathrm{L}}}\left(\mathrm{P}_{6}^{\prime} \sin 2 \theta_{K} \sin \theta_{l} \sin \phi-\frac{1}{2} \mathrm{P}_{8}^{\prime} \sin 2 \theta_{K} \sin 2 \theta_{l} \sin \phi\right)-\mathrm{P}_{3} \mathrm{~F}_{\mathrm{T}} \sin ^{2} \theta_{K} \sin ^{2} \theta_{I} \sin 2 \phi\right]\left(1-\mathrm{F}_{\mathrm{S}}\right)+\frac{1}{\Gamma_{\text {full }}^{\prime}} W_{\mathrm{S}}
\end{aligned}
$$

- in blue the set of relevant observables $\mathrm{P}_{1,2}, \mathrm{P}_{4,5}^{\prime}$ that are functions of $A_{\perp, \|, 0}^{L, R}$.
- the S-wave terms are (see discussion [M'12] \& [HM'15]) not all free observables:

$$
\begin{aligned}
\frac{\mathbf{W}_{\mathbf{S}}}{\Gamma_{\text {full }}^{\prime}}= & \frac{3}{16 \pi}\left[\mathbf{F}_{\mathbf{S}} \sin ^{2} \theta_{\ell}+\mathbf{A}_{\mathbf{S}} \sin ^{2} \theta_{\ell} \cos \theta_{K}+\mathbf{A}_{\mathbf{S}}^{4} \sin \theta_{K} \sin 2 \theta_{\ell} \cos \phi\right. \\
& \left.+\mathbf{A}_{\mathrm{S}}^{5} \sin \theta_{K} \sin \theta_{\ell} \cos \phi+\mathbf{A}_{\mathrm{S}}^{7} \sin \theta_{K} \sin \theta_{\ell} \sin \phi+\mathbf{A}_{\mathrm{S}}^{8} \sin \theta_{K} \sin 2 \theta_{\ell} \sin \phi\right]
\end{aligned}
$$

Symmetries tell you that a complete basis (lepton masses to zero) is, for instance:
$\left\{\Gamma_{K^{*}}^{\prime}, F_{L}, P_{1}, P_{2}, P_{3}, P_{4}^{\prime}, P_{5}^{\prime}, P_{6}^{\prime}\right\}$ and only 4 of $\left\{F_{S}, A_{S}, A_{S}^{4}, A_{S}^{5}, A_{S}^{7}, A_{S}^{8}\right\}$ are independent.

- very large K^{*}-recoil $\left(4 m_{\ell}^{2}<q^{2}<1 \mathrm{GeV}^{2}\right)$: γ almost real.

Four regions in q^{2} :

- large K^{*}-recoil/low-q ${ }^{2}$: $E_{K^{*}} \gg \Lambda_{Q C D}$ or $4 m_{\ell}^{2} \leq q^{2}<9 \mathrm{GeV}^{2}$: LCSR-FF
- charmonium region $\left(q^{2}=m_{J / \psi}^{2}, \ldots\right)$ betwen $9<q^{2}<14 \mathrm{GeV}^{2}$.
- low K^{*}-recoil/large- $q^{2}: E_{K^{*}} \sim \Lambda_{Q C D}$ or $14<q^{2} \leq\left(m_{B}-m_{K^{*}}\right)^{2}$: LQCD-FF

Theoretical description of $B \rightarrow K^{*} \ell^{+} \ell^{-} @$ low- q^{2}

QCDF provides a systematic framework to include α_{S} (factorizable and non-factorizable) corrections. Amplitude is represented by:

$$
\left\langle\ell^{+} \ell^{-} \bar{K}_{a}^{*}\right| H_{\text {eff }}|\bar{B}\rangle=\mathcal{C}_{a} \xi_{a}+\Phi_{B} \otimes T_{a} \otimes \Phi_{K^{*}} \text { with } a=\perp, \|
$$

- III. Non-factorizable α_{s} corrections:
\Rightarrow First class: spectator quark in the B meson participates in the hard scattering: $\left(T_{a}\right)$

(a)

(b)
\Rightarrow Second class: Matrix elements of four-quark operators and the chromomagnetic dipole op.: $\left(\mathcal{C}_{a}\right)$

(c)

(d)

(e)

BUT also we include a second type of power corrections:

- IV. Non-factorizable power corrections including charm-quark loops.

All four (non-)factorizable α_{s} and power corrections are included in our predictions.

In [DMV'13] we proposed to explain the anomaly in $B \rightarrow K^{*} \mu \mu$ with a Z^{\prime} gauge boson contributing to

$$
\mathcal{O}_{9}=e^{2} /\left(16 \pi^{2}\right)\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right),
$$

with specific couplings as a possible explanation of the anomaly in P_{5}^{\prime}.

Using the notation of Buras'12,'13

$$
\mathcal{L}^{q}=\left(\bar{s} \gamma_{\nu} P_{L} b \Delta_{L}^{s b}+\bar{s} \gamma_{\nu} P_{R} b \Delta_{R}^{s b}+\text { h.c. }\right) Z^{\prime \nu} \quad \mathcal{L}^{l e p}=\left(\bar{\mu} \gamma_{\nu} P_{L} \mu \Delta_{\mathrm{L}}{ }^{\mu \bar{\mu}}+\bar{\mu} \gamma_{\nu} P_{R} \mu \Delta_{\mathrm{R}}{ }^{\mu \bar{\mu}}+\ldots\right) Z^{\prime \nu}
$$

The Wilson coefficients of the semileptonic operators are:

$$
\mathcal{C}_{\{9,10\}}^{\mathrm{NP}}=-\frac{1}{s_{W}^{2} g_{S M}^{2}} \frac{1}{M_{Z^{\prime}}^{2}} \frac{\Delta_{L}^{s b} \Delta_{\{\mathrm{V}, \mathrm{~A}\}}^{\mu \mu}}{\lambda_{t s}}, \quad \mathcal{C}_{\left\{9^{\prime}, 10^{\prime}\right\}}^{\mathrm{NP}}=-\frac{1}{s_{W}^{2} g_{S M}^{2}} \frac{1}{M_{Z^{\prime}}^{2}} \frac{\Delta_{R}^{s b} \Delta_{\{\mathrm{V}, \mathrm{~A}\}}^{\mu \mu}}{\lambda_{t s}},
$$

with the vector and axial couplings to muons: $\Delta_{V, A}^{\mu \mu}=\Delta_{R}^{\mu \mu} \pm \Delta_{\mathrm{L}}^{\mu \mu}$.
$\Delta_{L}^{s b}$ with same phase as $\lambda_{t s}=V_{t b} V_{t s}^{*}$ (to avoid ϕ_{s}) like in MFV. Main constraint from $\Delta M_{B_{s}}\left(\Delta_{L, R}^{s b}\right)$.

A Z^{\prime} model can belong to the following categories:

	no-coupling	non-zero couplings	Pull
C_{9}	no-right-handed quark \& no-muon-axial coupling	$\Delta_{L}^{S b} \neq 0, \Delta_{V}^{\mu \mu} \neq 0$	5.0σ
$\left(C_{9}, C_{10}\right)$	no-right-handed quark coupling	$\Delta_{L}^{s b} \neq 0, \Delta_{V}^{L_{1}} \neq 0, \Delta_{A}^{\mu \mu} \neq 0$	4.8σ
$\left(C_{9}, C_{9}^{\prime}\right)$	no-muon-axial coupling	$\Delta_{L}^{S b} \neq 0, \Delta_{R}^{S b} \neq 0, \Delta_{V}^{\mu \mu} \neq 0$	4.9σ
$\left(C_{10}, C_{10}^{\prime}\right)$	no-muon-vector coupling	$\Delta_{L}^{S b} \neq 0, \Delta_{A}^{s b} \neq 0, \Delta_{A}^{\mu \mu} \neq 0$	\ldots
$\left(C_{9}^{\prime}, C_{10}^{\prime}\right)$	no-left-handed quark coupling	$\Delta_{R}^{S b} \neq 0, \Delta_{V}^{\mu} \neq 0, \Delta_{A}^{\mu \mu} \neq 0$	\ldots

Example: $C_{9}^{\mathrm{NP}}=-1.1, \Delta_{V}^{\mu \mu} / M_{Z}^{\prime}=-0.6 \mathrm{TeV}^{-1}$ and $\Delta_{L}^{b s} / M_{Z}^{\prime}=0.003 \mathrm{TeV}^{-1}$

- If NP enters all four semileptonic coefficients, the following relationships hold:

$$
\frac{\mathcal{C}_{9}^{\mathrm{NP}}}{\mathcal{C}_{10}^{\mathrm{NP}}}=\frac{\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}}{\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}}=\frac{\Delta_{V}^{\mu \mu}}{\Delta_{A}^{\mu \mu}}, \quad \frac{\mathcal{C}_{9}^{\mathrm{NP}}}{\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}}=\frac{\mathcal{C}_{10}^{\mathrm{NP}}}{\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}}=\frac{\Delta_{L}^{s b}}{\Delta_{R}^{s b}}
$$

Many ongoing attempts to embed this kind of Z^{\prime} inside a model [U.Haisch, W.Altmannshofer, A.Buras, D. Straub,..]

A few properties of the relevant observables $P_{1,2}$

The idea of exact cancellation of the poorly known soft form factors at LO at the zero of $A_{F B}$ was incorporated in the construction of the P_{i} (this is why they are "clean" compared to the S_{i})
$\underline{P_{1} \text { and } P_{2} \text { observables function of } A_{\perp} \text { and } A_{\|} \text {amplitudes }}$

- \mathbf{P}_{1} : Proportional to $\left|A_{\perp}\right|^{2}-\left|A_{\|}\right|^{2}$
- Test the LH structure of SM.

The existence of RH currents breaks the SM relation $A_{\perp} \sim-A_{\|}$

- \mathbf{P}_{2} : Proportional to $\operatorname{Re}\left(A_{i} A_{j}\right)$
- Zero of P_{2} at the same position as the zero of $A_{F B}$
- P_{2} is the clean version of $A_{F B}$. Their different normalizations offer different sensitivities.

- P_{3} and $P_{6,8}^{\prime}$ are proportional to $\operatorname{Im} A_{i} A_{j}$ and small if there are no large phases. All are <0.1.
- $P_{i}^{C P}$ are all negligibly small if there is no New Physics in weak phases.

What happened to P_{2} in 2015?

The new binning of F_{L} in 2015 had a temporary effect on the very interesting bin [2.5,4]

Tiny unfortunate fluctuation up.

$P_{2} \propto \frac{1}{\left(1-F_{L}\right)}$

More data (in this bin) is crucial.

Figure: For the scenario where NP occurs in the two Wilson coefficients \mathcal{C}_{7} and \mathcal{C}_{9}, we compare the situation from the analysis in Fig. 1 of Ref. DMV'13(on the left) and the current situation (on the right). On the right, we show the 3σ regions allowed by large-recoil only (dashed green), by bins in the [1-6] range (long-dashed blue), by low recoil (dot-dashed purple) and by considering all data (red, with 1,2,3 σ contours).

Bin $(0.1,0.98)$ lepton-mass effect

LHCb naturally given the limited statistics takes the massless lepton limit. They measure:

$$
\begin{aligned}
\frac{1}{d(\Gamma+\bar{\Gamma}) / d q^{2}} \frac{d^{3}(\Gamma+\bar{\Gamma})}{d \Omega}=\frac{9}{32 \pi} & {\left[\frac{3}{4}\left(1-F_{L}^{L H C b}\right) \sin ^{2} \theta_{K}+F_{L}^{L H C b} \cos ^{2} \theta_{K}\right.} \\
& \left.+\frac{1}{4}\left(1-F_{L}^{L H C b}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{I}-F_{L}^{L H C b} \cos ^{2} \theta_{K} \cos 2 \theta_{I}+\ldots\right]
\end{aligned}
$$

which is modified once lepton masses are considered

$$
\begin{aligned}
\frac{1}{d(\Gamma+\bar{\Gamma}) / d q^{2}} \frac{d^{3}(\Gamma+\bar{\Gamma})}{d \Omega}=\frac{9}{32 \pi} & {\left[\frac{3}{4} \hat{F}_{T} \sin ^{2} \theta_{K}+\hat{F}_{L} \cos ^{2} \theta_{K}\right.} \\
& \left.+\frac{1}{4} F_{T} \sin ^{2} \theta_{K} \cos 2 \theta_{I}-F_{L} \cos ^{2} \theta_{K} \cos 2 \theta_{l}+\ldots\right]
\end{aligned}
$$

where $\hat{F}_{T, L}$ and $F_{L, T}$ are [JM'12]. All our observables are thus written and computed in terms of the longitudinal and transverse polarisation fractions $F_{L, T}$

$$
F_{L}=-\frac{J_{2 c}}{d(\Gamma+\bar{\Gamma}) / d q^{2}} \quad F_{T}=4 \frac{J_{2 s}}{d(\Gamma+\bar{\Gamma}) / d q^{2}} \quad \Rightarrow \quad \hat{F}_{L}=\frac{J_{1 c}}{d(\Gamma+\bar{\Gamma}) / d q^{2}}
$$

WHEN measured value \hat{F}_{L} is used instead of F_{L} SM prediction is shifted towards the data in 1st bin

$$
\begin{aligned}
\left\langle F_{L}\right\rangle_{[0.1,0.98]}=0.21 \rightarrow 0.26, & \left\langle P_{2}\right\rangle_{[0.1,0.98]}=0.12 \rightarrow 0.09, \\
\left\langle P_{4}^{\prime}\right\rangle_{[0.1,0.98]}=-0.49 \rightarrow-0.38, & \left\langle P_{5}^{\prime}\right\rangle_{[0.1,0.98]}=0.68 \rightarrow 0.53 .
\end{aligned}
$$

$$
\left|\delta \mathcal{C}_{7}\right|=0.1 \quad\left|\delta \mathcal{C}_{9}\right|=1 \quad\left|\delta \mathcal{C}_{10}\right|=1 \quad\left|\delta \mathcal{C}_{7^{\prime}}\right|=0.1 \quad\left|\delta \mathcal{C}_{9^{\prime}}\right|=1 \quad\left|\delta \mathcal{C}_{10^{\prime}}\right|=1
$$

$\left\langle P_{1}\right\rangle_{[0.1, .98]}$	$\begin{aligned} & +\left\|\delta C_{i}\right\| \\ & -\left\|\delta C_{i}\right\| \end{aligned}$	--	---	---	$\begin{aligned} & -0.53 \\ & +0.52 \end{aligned}$	$\begin{aligned} & \hline-0.05 \\ & +0.05 \end{aligned}$	
$\left\langle P_{1}\right\rangle_{[6,8]}$	$\begin{aligned} & \hline+\left\|\delta C_{i}\right\| \\ & -\left\|\delta C_{i}\right\| \end{aligned}$	-	---	---	$\begin{aligned} & +0.11 \\ & -0.12 \end{aligned}$	$\begin{aligned} & \hline+0.16 \\ & -0.17 \end{aligned}$	$\begin{aligned} & \hline-0.37 \\ & +0.37 \end{aligned}$
$\left\langle P_{1}\right\rangle_{[15,19]}$	$\begin{aligned} & \hline+\left\|\delta C_{i}\right\| \\ & -\left\|\delta C_{i}\right\| \end{aligned}$	---	---	---	$\begin{aligned} & \hline+\mathbf{0 . 0 3} \\ & -0.03 \end{aligned}$	$\begin{aligned} & \hline+\mathbf{0 . 1 5} \\ & -0.11 \end{aligned}$	$\begin{array}{r} \hline-0.14 \\ +\mathbf{0 . 1 9} \end{array}$
$\left\langle P_{2}\right\rangle_{[2.5,4]}$	$\begin{aligned} & +\left\|\delta C_{i}\right\| \\ & -\left\|\delta C_{i}\right\| \end{aligned}$	$\begin{aligned} & -0.31 \\ & +0.19 \end{aligned}$	$\begin{aligned} & -0.21 \\ & +0.15 \end{aligned}$	$\begin{aligned} & +\mathbf{0 . 0 5} \\ & -0.04 \end{aligned}$	$\begin{gathered} -- \\ -0.03 \end{gathered}$	---	
$\left\langle P_{2}\right\rangle_{[6,8]}$	$\begin{aligned} & +\left\|\delta C_{i}\right\| \\ & -\left\|\delta C_{i}\right\| \end{aligned}$	$\begin{aligned} & -0.07 \\ & +\mathbf{0 . 1 1} \end{aligned}$	$\begin{aligned} & \hline-0.09 \\ & +\mathbf{0 . 1 7} \end{aligned}$	$\begin{aligned} & -0.06 \\ & +0.05 \end{aligned}$		---	
$\left\langle P_{2}\right\rangle_{[15,19]}$	$\begin{aligned} & +\left\|\delta C_{i}\right\| \\ & -\left\|\delta C_{i}\right\| \end{aligned}$	--	$+0.04$	--	---	$\begin{aligned} & -0.05 \\ & +0.05 \end{aligned}$	$\begin{aligned} & +0.06 \\ & -0.06 \end{aligned}$
$\left\langle P_{4}^{\prime}\right\rangle_{[6,8]}$	$\begin{aligned} & +\left\|\delta C_{i}\right\| \\ & -\left\|\delta C_{i}\right\| \end{aligned}$	$\begin{aligned} & +\mathbf{0 . 0 4} \\ & -0.05 \end{aligned}$	--	--	$\begin{aligned} & -0.11 \\ & +\mathbf{0 . 0 9} \end{aligned}$	$\begin{array}{r} \hline-0.10 \\ +\mathbf{0 . 1 0} \end{array}$	$\begin{aligned} & \hline+\mathbf{0 . 1 7} \\ & -0.20 \end{aligned}$
$\left\langle P_{4}^{\prime}\right\rangle_{[15,19]}$	$\begin{aligned} & +\left\|\delta C_{i}\right\| \\ & -\left\|\delta C_{i}\right\| \end{aligned}$	$--$	--	--	--	$\begin{aligned} & \hline-0.06 \\ & +0.04 \end{aligned}$	$\begin{aligned} & +0.05 \\ & -0.08 \end{aligned}$
$\left\langle P_{5}^{\prime}\right\rangle_{[4,6]}$	$\begin{aligned} & +\left\|\delta C_{i}\right\| \\ & -\left\|\delta C_{i}\right\| \end{aligned}$	$\begin{array}{r} -0.11 \\ +\mathbf{0 . 1 6} \end{array}$	$\begin{aligned} & -0.15 \\ & +0.28 \end{aligned}$	$\begin{aligned} & -0.10 \\ & +0.09 \end{aligned}$	$\begin{aligned} & -0.11 \\ & +\mathbf{0 . 1 5} \end{aligned}$	$\begin{aligned} & -0.06 \\ & +\mathbf{0 . 1 0} \end{aligned}$	$\begin{aligned} & +\mathbf{0 . 2 1} \\ & -0.21 \end{aligned}$
$\left\langle P_{5}^{\prime}\right\rangle_{[6,8]}$	$\begin{aligned} & +\left\|\delta C_{i}\right\| \\ & -\left\|\delta C_{i}\right\| \end{aligned}$	$\begin{array}{r} -0.04 \\ +\mathbf{0 . 0 7} \end{array}$	$\begin{aligned} & \hline-0.07 \\ & +\mathbf{0 . 1 9} \end{aligned}$	$\begin{aligned} & \hline-0.07 \\ & +\mathbf{0 . 0 9} \end{aligned}$	$\begin{aligned} & \hline-0.08 \\ & +\mathbf{0 . 1 0} \end{aligned}$	$\begin{aligned} & \hline-0.08 \\ & +\mathbf{0 . 1 1} \end{aligned}$	$\begin{aligned} & \hline+0.19 \\ & -0.18 \end{aligned}$

Correlations play a central role

If one wants to solve the anomalies exhibited in $b \rightarrow s \mu \mu$ processes through power corrections, it is important not to focus on one single observable, like P_{5}^{\prime}, alone but on the full set.

Illustrative example. Let's do the following exercise: Assume you take the non-optimal scheme-2 as in (JC'14) and helicity basis

$$
a_{V_{ \pm}}=\frac{1}{2}\left[\left(1+\frac{m_{K^{*}}}{m_{B}}\right) a_{1} \mp\left(1-\frac{m_{K^{*}}}{m_{B}}\right) a_{V}\right] .
$$

- Notice that taking a_{V-} in a range ± 0.1 correspond to an absurd 33% power correction in KMPW.
\rightarrow because a 10% in KMPW corresponds to 0.03 in a_{v-}.
\rightarrow accepting values like ($a_{V_{-}}=-0.1, a_{V_{+}}=0$) would imply that BSZ computation of $A_{1}\left(q^{2}\right)$ is wrong by several sigmas.
- An explanation of $\left\langle P_{5}^{\prime}\right\rangle_{[4,6]},\left\langle P_{2}\right\rangle_{[4,6]}$ and $\left\langle P_{1}\right\rangle_{[4,6]}$ within SM requires a 20% correction. Adding $\left\langle P_{5}^{\prime}\right\rangle_{[6,8]}$ no common solution found even beyond 20%.

$$
\begin{aligned}
J_{1 s} & =\frac{\left(2+\beta_{\ell}^{2}\right)}{4}\left[\left|A_{\perp}^{L}\right|^{2}+\left|A_{\|}^{L}\right|^{2}+(L \rightarrow R)\right]+\frac{4 m_{\ell}^{2}}{q^{2}} \operatorname{Re}\left(A_{\perp}^{L} A_{\perp}^{R^{*}}+A_{\|}^{L} A_{\|}^{R^{*}}\right), \\
J_{1 c} & =\left|A_{0}^{L}\right|^{2}+\left|A_{0}^{R}\right|^{2}+\frac{4 m_{\ell}^{2}}{q^{2}}\left[\left|A_{t}\right|^{2}+2 \operatorname{Re}\left(A_{0}^{L} A_{0}^{R^{*}}\right)\right]+\beta_{\ell}^{2}\left|A_{S}\right|^{2}, \\
J_{2 s} & =\frac{\beta_{\ell}^{2}}{4}\left[\left|A_{\perp}^{L}\right|^{2}+\left|A_{\|}^{L}\right|^{2}+(L \rightarrow R)\right], \quad J_{2 c}=-\beta_{\ell}^{2}\left[\left|A_{0}^{L}\right|^{2}+(L \rightarrow R)\right], \\
J_{3} & =\frac{1}{2} \beta_{\ell}^{2}\left[\left|A_{\perp}^{L}\right|^{2}-\left|A_{\|}^{L}\right|^{2}+(L \rightarrow R)\right], \quad J_{4}=\frac{1}{\sqrt{2}} \beta_{\ell}^{2}\left[\operatorname{Re}\left(A_{0}^{L} A_{\|}^{L_{\|}^{*}}\right)+(L \rightarrow R)\right], \\
J_{5} & =\sqrt{2} \beta_{\ell}\left[\operatorname{Re}\left(A_{0}^{L} A_{\perp}^{L *}\right)-(L \rightarrow R)-\frac{m_{\ell}}{\sqrt{q^{2}}} \operatorname{Re}\left(A_{\|}^{L} A_{S}^{*}+A_{\|}^{R} A_{S}^{*}\right)\right], \\
J_{6 s} & \left.=2 \beta_{\ell}\left[\operatorname{Re}\left(A_{\|}^{L} A_{\perp}^{L}\right)^{*}\right)-(L \rightarrow R)\right], \quad J_{6 c}=4 \beta_{\ell} \frac{m_{\ell}}{\sqrt{q^{2}}} \operatorname{Re}\left[A_{0}^{L} A_{S}^{*}+(L \rightarrow R)\right], \\
J_{7} & =\sqrt{2} \beta_{\ell}\left[\operatorname{lm}\left(A_{0}^{L} A_{\|}^{L^{*}}\right)-(L \rightarrow R)+\frac{m_{\ell}}{\sqrt{q^{2}}} \operatorname{Im}\left(A_{\perp}^{L} A_{S}^{*}+A_{\perp}^{R} A_{S}^{*}\right)\right], \\
J_{8} & =\frac{1}{\sqrt{2}} \beta_{\ell}^{2}\left[\operatorname{lm}\left(A_{0}^{L} A_{\perp}^{L}{ }^{*}\right)+(L \rightarrow R)\right], \quad J_{9}=\beta_{\ell}^{2}\left[\operatorname{Im}\left(A_{\|}^{L *} A_{\perp}^{L}\right)+(L \rightarrow R)\right]
\end{aligned}
$$

In red lepton mass terms and $\beta_{\ell}=\sqrt{1-4 m_{\ell}^{2} / q^{2}}$

A glimpse into the future: Wilson coefficients versus Anomalies

$R_{K}\left\langle P_{5}^{\prime}\right\rangle_{[4,6],[6,8]} \mathcal{B}_{B_{s} \rightarrow \phi \mu \mu} \quad \mathcal{B}_{B_{s} \rightarrow \mu \mu}$ best-fit-point of global fit

Table: A checkmark (\checkmark) indicates that a shift in the Wilson coefficient with this sign moves the prediction in the right direction to solve the corresponding anomaly. $\mathcal{B}_{B_{s} \rightarrow \mu \mu}$ is not an anomaly but a very mild tension.

- $\mathcal{C}_{9}^{N P}<0$ is consistent with all anomalies. This is the reason why it gives a strong pull.
- $\mathcal{C}_{10}^{N P}, C_{9,10}^{\prime}$ fail in some anomaly. BUT
$\Rightarrow \mathcal{C}_{10}^{N P}$ is the most promising coefficient after \mathcal{C}_{9}.
$\Rightarrow C_{9}^{\prime}, C_{10}^{\prime}$ seems quite inconsistent between the different anomalies and the global fit.

More technical arguments why scheme-2 is not an appropriate scheme

In the old scheme used by (also $\left.J C^{\prime} 14\right): \xi_{\perp}^{(2)}\left(\mathbf{q}^{2}\right) \equiv \mathbf{T}_{1}\left(\mathbf{q}^{2}\right), \xi_{\|}^{(2)}\left(\mathbf{q}^{2}\right) \equiv \frac{\mathbf{m}_{\kappa^{*}}}{E} \mathbf{A}_{0}\left(\mathbf{q}^{2}\right)$.
\Rightarrow Power corrections associated to $\Delta T_{1}^{\wedge}\left(q^{2}\right)$ and $\Delta A_{0}^{\wedge}\left(q^{2}\right)$ are absorbed in $\xi_{\perp, \|}$.
Problems of T_{1} choice:

- Extracting $T_{1}(0)$ from data on $B \rightarrow K^{*} \gamma$ is plagued of assumptions (as done in $\mathrm{JC}{ }^{\prime} 12$):

1) assumption of no NP in $C_{7}^{(1)}+$ ignoring possible non-factorizable power corrections.

- Taking T_{1} from LCSR and use it to define ξ_{\perp} is also non-optimal (as done in JC'14).

$$
A_{\perp}^{L, R}=\mathcal{N}_{\perp}\left[\mathcal{C}_{9 \pm 10}^{+}\left[\mathbf{V}^{\text {sff }+\alpha_{\mathbf{s}}}\left(\mathbf{q}^{2}\right)+\Delta V^{\wedge}\right]+\mathcal{C}_{7}^{+}\left[\mathbf{T}_{1}^{\mathrm{sff}+\alpha_{\mathbf{s}}}\left(\mathbf{q}^{2}\right)+\Delta T_{1}^{\wedge}\right]\right]+\mathcal{O}\left(\alpha_{s}, \Lambda / m_{b}, \ldots\right)
$$

If one is interested in obtaining accurated predictions for observables dominated by C_{9} (like P_{5}^{\prime}) better to have a good control of p.c on V than in T_{1}.
$\Rightarrow T_{1}$ may be a good choice for observables dominated by C_{7}.

Problem of A_{0} choice:

P_{i} observables do not depend on $A_{0}\left(q^{2}\right)$ FF. $\Rightarrow A_{0}$ choice would be a good choice for lepton-mass suppressed observables.

Theoretical description of $B \rightarrow K^{*} \ell^{+} \ell^{-} @$ low- q^{2}

2. Full FF approach: (Bharucha, Straub, Zwicky):

Less general, attached to details of a particular LCSR computation.
$\Rightarrow \Delta F^{\alpha_{s}}$ and ΔF^{\wedge} are included.
\Rightarrow BUT BE CAREFUL one should add also to be complete:

- Non-factorizable α_{s} corrections from QCDF.
- Non-factorizable power corrections and charm-quark loop effects

Usually applied to $\mathrm{S}_{\mathrm{i}}=\left(J_{i}+\bar{J}_{i}\right) /(d \Gamma+\bar{d} \Gamma)$
\rightarrow observables highly dependent on FF-error estimate and internal assumptions of FF computation. A small error in FF induces a small error in S_{i}

Why we prefer to work within IQCDF:

- NATURAL FRAMEWORK for optimized observables P_{i}
- CORRELATIONS ARE TRANSPARENT and easy to REPRODUCE
- It allows us to predict observables from different set of FORM FACTORS (BZ,BSZ,KMPW) and to compare results.
- Amplitude analysis (Petridis, Egede, ...). Not a FF treatment but a different approach to data based on exploiting the symmetries of the distribution.

Theoretical description of $B \rightarrow K^{*} \ell^{+} \ell^{-} @$ low- q^{2}

2. Full FF approach: (Bharucha, Straub, Zwicky):

Less general, attached to details of a particular LCSR computation.
$\Rightarrow \Delta F^{\alpha_{s}}$ and ΔF^{\wedge} are included.
\Rightarrow BUT BE CAREFUL one should add also to be complete:

- Non-factorizable α_{s} corrections from QCDF.
- Non-factorizable power corrections and charm-quark loop effects

Usually applied to $\mathrm{S}_{\mathrm{i}}=\left(J_{i}+\bar{J}_{i}\right) /(d \Gamma+\bar{d} \Gamma)$
\rightarrow observables highly dependent on FF-error estimate and internal assumptions of FF computation. A small error in FF induces a small error in S_{i}

Why we prefer to work within IQCDF:

- NATURAL FRAMEWORK for optimized observables P_{i}
- CORRELATIONS ARE TRANSPARENT and easy to REPRODUCE
- It allows us to predict observables from different set of FORM FACTORS (BZ,BSZ,KMPW) and to compare results.
- Amplitude analysis (Petridis, Egede, ...). Not a FF treatment but a different approach to data based on exploiting the symmetries of the distribution.

Light-meson distribution amplitudes+EOM.

FF-KMPW	$F_{B K(*)}^{i}(0)$	b_{1}^{i}
$f_{B K}^{+}$	$0.34_{-0.02}^{+0.05}$	$-2.1_{-1.6}^{+0.9}$
$f_{B K}^{0}$	$0.34_{-0.02}^{+0.05}$	$-4.3_{-0.9}^{+0.8}$
$f_{B K}^{T}$	$0.39_{-0.03}^{+0.05}$	$-2.2_{-0.00}^{+1.0}$
$V^{B K^{*}}$	$\mathbf{0 . 3 6}_{-0.12}^{+0.23}$	$-4.8_{-0.4}^{+0.8}$
$A_{1}^{B K^{*}}$	$\mathbf{0 . 2 5}_{-0.10}^{+0.16}$	$0.34_{-0.80}^{+0.86}$
$A_{2}^{B K^{*}}$	$0.23_{-0.10}^{+0.19}$	$-0.85_{-1.35}^{+2.88}$
$A_{0}^{B K^{*}}$	$0.29_{-0.07}^{+0.10}$	$-18.2_{-3.0}^{+1.3}$
$T_{1}^{B K^{*}}$	$0.31_{-0.10}^{+0.18}$	$-4.6_{-0.41}^{+0.81}$
$T_{2}^{B K^{*}}$	$0.31_{-0.10}^{+0.18}$	$-3.2_{-2.2}^{+2.1}$
$T_{3}^{B K^{*}}$	$0.22_{-0.10}^{+0.17}$	$-10.3_{-3.1}^{+2.5}$

Table: The $B \rightarrow K^{(*)}$ form factors from LCSR and their z-parameterization.

- Interestingly in BSZ (update from BZ) most relevant FF from BZ moved towards KMPW. For example:

$$
V^{B Z}(0)=0.41 \rightarrow 0.37 \quad T_{1}^{B Z}(0)=0.33 \rightarrow 0.31
$$

- The size of uncertainty in $B S Z=$ size of error of p.c.

FF-BSZ	$B \rightarrow K^{*}$	$B_{s} \rightarrow \phi$	$B_{s} \rightarrow K^{*}$
$A_{0}(0)$	0.391 ± 0.035	0.433 ± 0.035	0.336 ± 0.032
$A_{1}(0)$	$\mathbf{0 . 2 8 9} \pm \mathbf{0 . 0 2 7}$	0.315 ± 0.027	0.246 ± 0.023
$A_{12}(0)$	0.281 ± 0.025	0.274 ± 0.022	0.246 ± 0.023
$V(0)$	$\mathbf{0 . 3 6 6} \pm \mathbf{0 . 0 3 5}$	0.407 ± 0.033	0.311 ± 0.030
$T_{1}(0)$	0.308 ± 0.031	0.331 ± 0.030	0.254 ± 0.027
$T_{2}(0)$	0.308 ± 0.031	0.331 ± 0.030	0.254 ± 0.027
$T_{23}(0)$	0.793 ± 0.064	0.763 ± 0.061	0.643 ± 0.058

Table: Values of the form factors at $q^{2}=0$ and their uncertainties.

All FF determinations are computed in the transversity basis ($A_{\perp, \|, 0}$) and correspond to $V, A_{0,1,2}, T_{1,2,3}$.
But some people prefer (at their own risk) to use an helicity basis:

$$
\begin{align*}
V_{ \pm}\left(q^{2}\right) & =\frac{1}{2}\left[\left(1+\frac{m_{V}}{m_{B}}\right) A_{1}\left(q^{2}\right) \mp \frac{\lambda^{1 / 2}}{m_{B}\left(m_{B}+m_{V}\right)} V\left(q^{2}\right)\right] \\
V_{0}\left(q^{2}\right) & =\frac{1}{2 m_{V} \lambda^{1 / 2}\left(m_{B}+m_{V}\right)}\left[\left(m_{B}+m_{V}\right)^{2}\left(m_{B}^{2}-q^{2}-m_{V}^{2}\right) A_{1}\left(q^{2}\right)-\lambda A_{2}\left(q^{2}\right)\right] \\
T_{ \pm}\left(q^{2}\right) & =\frac{m_{B}^{2}-m_{V}^{2}}{2 m_{B}^{2}} T_{2}\left(q^{2}\right) \mp \frac{\lambda^{1 / 2}}{2 m_{B}^{2}} T_{1}\left(q^{2}\right) \\
T_{0}\left(q^{2}\right) & =\frac{m_{B}}{2 m_{V} \lambda^{1 / 2}}\left[\left(m_{B}^{2}+3 m_{V}^{2}-q^{2}\right) T_{2}\left(q^{2}\right)-\frac{\lambda}{\left(m_{B}^{2}-m_{V}^{2}\right)} T_{3}\left(q^{2}\right)\right] \\
S\left(q^{2}\right) & =A_{0}\left(q^{2}\right) \tag{31}
\end{align*}
$$

Theoretical description of $B \rightarrow K^{*} \ell^{+} \ell^{-} @$ large- q^{2}

- It corresponds to large $\sqrt{q^{2}} \sim \mathcal{O}\left(m_{b}\right)$ above ψ^{\prime} mass, i.e., E_{K} is around GeV or below.
- OPE in $E_{K} / \sqrt{q^{2}}$ or $\Lambda_{Q C D} / \sqrt{q^{2}}$ (Buchalla et al). NLO QCD correct. to the OPE coeffs (Greub et al)
- Lattice QCD form factors with correlations (Horgan et al proceeding update)
- Estimates on BR from GP (5\%) and BBF (2\%) using Shifman's model.
$\Rightarrow \pm 10 \%$ on angular observables to account for possible Duality Violations.
Existence of $c \bar{c}$ resonances in this region (clearly seen $\psi(4160)$ in $B^{-} \rightarrow K^{-} \mu^{+} \mu^{-}$), \Rightarrow require to take a long bin.

... but this region is neither the most sensitive to New Physics nor where interesting things happen!

Brief Discussion on: P_{5}^{\prime} and P_{4}^{\prime}

P_{5}^{\prime} was proposed for the first time in DMRV, JHEP 1301 (2013)048

$$
P_{5}^{\prime}=\sqrt{2} \frac{\operatorname{Re}\left(A_{0}^{L} A_{\perp}^{L *}-A_{0}^{R} A_{\perp}^{R *}\right)}{\sqrt{\left|A_{0}\right|^{2}\left(\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}\right)}}=\sqrt{2} \frac{\operatorname{Re}\left[n_{0} n_{\perp}^{\dagger}\right]}{\sqrt{\left|n_{0}\right|^{2}\left(\left|n_{\perp}\right|^{2}+\left|n_{\|}\right|^{2}\right)}} .
$$

with $n_{0}=\left(A_{0}^{L}, A_{0}^{R *}\right), n_{\perp}=\left(A_{\perp}^{L},-A_{\perp}^{R *}\right)$ and $n_{\|}=\left(A_{\|}^{L}, A_{\|}^{R *}\right)$

- If no-RHC $\left|n_{\perp}\right| \simeq\left|n_{\|}\right|\left(H_{+1} \simeq 0\right) \Rightarrow P_{5}^{\prime} \propto \cos \theta_{0, \perp}\left(\mathbf{q}^{2}\right)$

Brief Discussion on: P_{5}^{\prime} and P_{4}^{\prime}

P_{5}^{\prime} was proposed for the first time in DMRV, JHEP 1301(2013)048

$$
P_{5}^{\prime}=\sqrt{2} \frac{\operatorname{Re}\left(A_{0}^{L} A_{\perp}^{L *}-A_{0}^{R} A_{\perp}^{R *}\right)}{\sqrt{\left|A_{0}\right|^{2}\left(\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}\right)}}=\sqrt{2} \frac{\operatorname{Re}\left[n_{0} n_{\perp}^{\dagger}\right]}{\sqrt{\left|n_{0}\right|^{2}\left(\left|n_{\perp}\right|^{2}+\left|n_{\|}\right|^{2}\right)}} .
$$

with $n_{0}=\left(A_{0}^{L}, A_{0}^{R *}\right), n_{\perp}=\left(A_{\perp}^{L},-A_{\perp}^{R *}\right)$ and $n_{\|}=\left(A_{\|}^{L}, A_{\|}^{R *}\right)$

- If no-RHC $\left|n_{\perp}\right| \simeq\left|n_{\|}\right|\left(H_{+1} \simeq 0\right) \Rightarrow P_{5}^{\prime} \propto \cos \theta_{0, \perp}\left(\mathbf{q}^{2}\right)$

In the large-recoil limit with no RHC

- $\operatorname{In} \operatorname{SM} \mathcal{C}_{9}^{S M}+\mathcal{C}_{10}^{S M} \simeq 0 \rightarrow\left|A_{\perp, \|}^{R}\right| \ll\left|A_{\perp, \|}^{L}\right|$
- In P_{5}^{\prime} : If $C_{9}^{N P}<0$ then $A_{0, \|}^{R} \uparrow,\left|A_{\perp}^{R}\right| \uparrow$ and $\left|A_{0, \|}^{L}\right| \downarrow, A_{\perp}^{L} \downarrow$ and due to -, $\left|P_{5}^{\prime}\right|$ gets strongly reduced.

Brief Discussion on: P_{5}^{\prime} and P_{4}^{\prime}

P_{5}^{\prime} was proposed for the first time in DMRV, JHEP 1301(2013)048

$$
P_{5}^{\prime}=\sqrt{2} \frac{\operatorname{Re}\left(A_{0}^{L} A_{\perp}^{L *}-A_{0}^{R} A_{\perp}^{R *}\right)}{\sqrt{\left|A_{0}\right|^{2}\left(\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}\right)}}=\sqrt{2} \frac{\operatorname{Re}\left[n_{0} n_{\perp}^{\dagger}\right]}{\sqrt{\left|n_{0}\right|^{2}\left(\left|n_{\perp}\right|^{2}+\left|n_{\|}\right|^{2}\right)}} .
$$

with $n_{0}=\left(A_{0}^{L}, A_{0}^{R *}\right), n_{\perp}=\left(A_{\perp}^{L},-A_{\perp}^{R *}\right)$ and $n_{\|}=\left(A_{\|}^{L}, A_{\|}^{R *}\right)$

- If no-RHC $\left|n_{\perp}\right| \simeq\left|n_{\|}\right|\left(H_{+1} \simeq 0\right) \Rightarrow P_{5}^{\prime} \propto \cos \theta_{0, \perp}\left(\mathbf{q}^{2}\right)$

In the large-recoil limit with no RHC

$$
\begin{aligned}
A_{\perp, \|}^{L} & \propto(1,-1)\left[\mathcal{C}_{9}^{\text {eff }}-\mathcal{C}_{10}+\frac{2 \hat{m}_{b}}{\hat{s}} \mathcal{C}_{7}^{\text {eff }}\right] \xi_{\perp}\left(E_{K^{*}}\right) \quad A_{\perp, \|}^{R} \propto(1,-1)\left[\mathcal{C}_{9}^{\text {eff }}+\mathcal{C}_{10}+\frac{2 \hat{m}_{b}}{\hat{s}} \mathcal{C}_{7}^{\mathrm{eff}}\right] \xi_{\perp}\left(E_{K^{*}}\right) \\
A_{0}^{L} & \propto-\left[\mathcal{C}_{9}^{\text {eff }}-\mathcal{C}_{10}+2 \hat{m}_{b} \mathcal{C}_{7}^{\text {eff }}\right] \xi_{\|}\left(E_{K^{*}}\right) \quad A_{0}^{R} \propto-\left[\mathcal{C}_{9}^{\text {eff }}+\mathcal{C}_{10}+2 \hat{m}_{b} \mathcal{C}_{7}^{\text {eff }}\right] \xi_{\|}\left(E_{K^{*}}\right)
\end{aligned}
$$

- $\operatorname{In} \operatorname{SM} \mathcal{C}_{9}^{S M}+\mathcal{C}_{10}^{S M} \simeq 0 \rightarrow\left|A_{\perp, \|}^{R}\right| \ll\left|A_{\perp, \|}^{L}\right|$
- In P_{5}^{\prime} : If $C_{9}^{N P}<0$ then $A_{0, \|}^{R} \uparrow,\left|A_{\perp}^{R}\right| \uparrow$ and $\left|A_{0, \|}^{L}\right| \downarrow, A_{\perp}^{L} \downarrow$ and due to,$-\left|P_{5}^{\prime}\right|$ gets strongly reduced.

Brief Discussion on: P_{5}^{\prime} and P_{4}^{\prime}

P_{4}^{\prime} was proposed for the first time in DMRV, JHEP 1301(2013)048

$$
P_{4}^{\prime}=\sqrt{2} \frac{\operatorname{Re}\left(A_{0}^{L} A_{\|}^{L *}+A_{0}^{R} A_{\|}^{R *}\right)}{\sqrt{\left|A_{0}\right|^{2}\left(\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}\right)}}=\sqrt{2} \frac{\operatorname{Re}\left[n_{0} n_{\|}^{\dagger}\right]}{\sqrt{\left|n_{0}\right|^{2}\left(\left|n_{\perp}\right|^{2}+\left|n_{\|}\right|^{2}\right)}} .
$$

$$
\text { with } n_{0}=\left(A_{0}^{L}, A_{0}^{R *}\right), n_{\perp}=\left(A_{\perp}^{L},-A_{\perp}^{R *}\right) \text { and } n_{\|}=\left(A_{\|}^{L}, A_{\|}^{R *}\right)
$$

- If no-RHC $\left|n_{\perp}\right| \simeq\left|n_{\|}\right|\left(H_{+1} \simeq 0\right) \Rightarrow P_{4}^{\prime} \propto \cos \theta_{0, \|}\left(\mathbf{q}^{2}\right)$

In the large-recoil limit with no RHC

$$
\begin{aligned}
A_{\perp, \|}^{L} & \propto(1,-1)\left[\mathcal{C}_{9}^{\text {eff }}-\mathcal{C}_{10}+\frac{2 \hat{m}_{b}}{\hat{s}} \mathcal{C}_{7}^{\text {eff }}\right] \xi_{\perp}\left(E_{K^{*}}\right) \quad A_{\perp, \|}^{R} \propto(1,-1)\left[\mathcal{C}_{9}^{\text {eff }}+\mathcal{C}_{10}+\frac{2 \hat{m}_{b}}{\hat{s}} \mathcal{C}_{7}^{\text {eff }}\right] \xi_{\perp}\left(E_{K^{*}}\right) \\
A_{0}^{L} & \propto-\left[\mathcal{C}_{9}^{\text {eff }}-\mathcal{C}_{10}+2 \hat{m}_{b} \mathcal{C}_{7}^{\text {eff }}\right] \xi_{\|}\left(E_{K^{*}}\right) \quad A_{0}^{R} \propto-\left[\mathcal{C}_{9}^{\text {eff }}+\mathcal{C}_{10}+2 \hat{m}_{b} \mathcal{C}_{7}^{\text {eff }}\right] \xi_{\|}\left(E_{K^{*}}\right)
\end{aligned}
$$

- $\operatorname{In} \operatorname{SM} \mathcal{C}_{9}^{S M}+\mathcal{C}_{10}^{S M} \simeq 0 \rightarrow\left|A_{\perp, \|}^{R}\right| \ll\left|A_{\perp, \|}^{L}\right|$
- In P_{4}^{\prime} :If $C_{9}^{N P}<0$ then $A_{0,| |}^{R} \uparrow,\left|A_{\perp}^{R}\right| \uparrow$ and $\left|A_{0,| |}^{L}\right| \downarrow, A_{\perp}^{L} \downarrow$ due to + what L loses R gains (little change).

Two last important problems in JC'14:
I) P_{5}^{\prime} is claimed to be scheme independent in their approach in $\mathrm{JC}^{\prime} 14$.

This is wrong consequence of using helicity basis + restricted set of schemes.
Proven numerically in DLMV'14 and analytically in (CDLMV'16) \Rightarrow missing term.
II) Undervalutation of the error of ξ_{\perp} in JC'14 (affects F_{L} and S_{i}):

- $\xi_{\perp}=0.31 \pm 0.04$ in JC '14: from spread of only central values of BZ,KMPW,DSE.
- $\xi_{\perp}=0.31_{-0.10}^{+0.20}$ is our input using KMPW but including errors!
- Positive outcome: New ingredient added in JC'12: factorizable power corrections.
- Error of JC'12 and JC'14: missing the keypoint of scheme dependence that leads them to artificially inflate errors.
- Our contribution DHMV'14:
- Systematic computation of p.c.
- Identification of the relevance of the scheme choice with uncorrelated p.c.
- Correct evaluation of impact in observables

In summary, we have shown that to take power corrections uncorrelated and $\mathcal{O}\left(\Lambda / m_{b}\right)$ is perfectly fine (even recommended to be on a conservative side) but always using an appropriate scheme choice.

Attempt 1 (Lyon, Zwicky'14 unpublished):

- Using $e^{+} e^{-} \rightarrow$ hadrons to build a model of $c \bar{c}$ resonances at low-recoil in $B \rightarrow K \mu \mu$.

Two problems: extrapolate result at large-recoil and assume it holds the same for $B \rightarrow K^{*} \mu \mu$.
Left: Different predictions from LZ'14 for P_{5}^{\prime} corresponding to different hypothesis of extrapolation from high $-q^{2}$ to low- q^{2} : in all cases LZ'14 predicts bin $[6,8]$ above $[4,6]$.

- Positive outcome: Phase of helicity amplitudes $e^{i \delta_{J / \Psi K^{*}}}$ from $\delta_{J / \Psi K^{*}} \simeq 0(\mathrm{KMPW})$ to π.

Data tell us: Smooth behaviour of $3 \mathrm{fb}^{-1}$ data where bin $[6,8]$ is not above [4,6] does not favour claims on large-long distance charm q^{2} effects in $[6,8]$ bin.

- Our contribution DHMV'14\&15: We include a free parameter s_{i} for each amplitude from -1 to 1

Indeed, our charm error estimate @anomaly is more conservative than BSZwicky estimate.
2. If the answer is $h_{\lambda}^{(1)}$ you are unable to explain many data, if it is $C_{9}^{N P}=-1.1$ "yes you can":

- nor R_{K} (solved with $\mathrm{C}_{9}^{\mathrm{NP}}=-1.1$) neither any LFVU observable like $R_{K^{*}}$ due to charm universality.
- any tiny tension in the low-recoil region of $B^{0} \rightarrow K^{* 0} \mu \mu(1.7 \rightarrow 0.3 \sigma), B^{+} \rightarrow K^{*+} \mu \mu(2.5 \rightarrow 1.2 \sigma)$, $B_{s} \rightarrow \phi \mu \mu(2.3 \rightarrow 0.5 \sigma)$. Also the old bin [2,4.3] of P_{2} of 2013 cannot be explained.
- ... (stay tunned)

Contradictory statements:

- "No deviation is present once all the theoretical uncertainties are taken into account".
\Rightarrow By forcing the fit they induce a problem (2.7 σ) in S_{4} a fully SM-like observable (us and BSZ we both find good agreement with SM in all bins!)

