Recent results on J/ψ radiative decays from BESIII

Zhang Jingqing

Chinese Academy of Sciences

(On behalf of the \mathbb{H}^{5} Collaboration)

Les Rencontres de Physique de la Vallee d'Aoste Results and Perspectives in Particle Physics La Thuile, Aosta Valley (Italy), March 6-12, 2016

Outline

- Introduction
- Selected results on J/ψ radiative decays
 - 1. Spin-parity determination of the X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$
 - 2. Observation of the X(1840) in $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$
 - 3. Partial wave analysis of $J/\psi \rightarrow \gamma \pi^0 \pi^0$
 - 4. Partial wave analysis of $J/\psi \rightarrow \gamma \phi \phi$
- Summary

The BESIII detector

BESIII accumulated 1.3 billion J/ψ events in 2009 and 2012: Clean and rich source for light hadrons

J/ψ radiative decays

- J/ψ radiative decays: "gluon-rich" process
- Clean data sample from e^+e^- annihilation
- An ideal environment to study light hadron spectroscopy
- Also search for glueball, hybrid state, multiquark state

Spin-parity determination of the X(1835)

- > X(1835):
- First observed in $J/\psi \to \gamma \eta' \pi \pi$ at BESII in 2005, and confirmed at $\Xi \in \Sigma$

- Nature unclear: $p\bar{p}$ bound state, excited η' , glueball
- \triangleright Partial Wave Analysis of $J/\psi \rightarrow \gamma K_S K_S \eta$:
- A clean channel $(J/\psi \to K_S K_S \eta)$ and $J/\psi \to K_S K_S \eta \pi^0$ are forbidden)
- The X(1835) is observed on $M(K_SK_S\eta)$ in $J/\psi \to \gamma K_SK_S\eta$
- PWA for $M(K_SK_S) < 1.1 \ GeV/c^2$

1.3 billion J/ψ events

Phys. Rev. Lett. 115, 091803 (2015)

Spin-parity determination of the X(1835)

- Two resonant pseudoscalar (0⁻⁺) components_{\geq 200}
- $X(1835) \rightarrow K_S K_S \eta$ (> 12.9 σ) dominated by $f_0(980)$ production

$$M = 1844 \pm 9^{+16}_{-25} \text{ MeV}/c^2, \Gamma = 192^{+20}_{-17}^{+16} \text{ MeV}$$

- ✓ Consistent with the X(1835) in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
- \checkmark Mass/spin is consistent with those of the \checkmark $\langle p\bar{p}\rangle$
- \checkmark Width is larger than the width of the $X(p\bar{p})$

PRL 115, 091803 (2015)

Observation of the X(1840)

• Clear enhancement at 1.84 GeV/ c^2 on $M(3(\pi^+\pi^-))$ in $J/\psi \to \gamma 3(\pi^+\pi^-)$

• M = $1842.2 \pm 4.2^{+7.1}_{-2.6} \text{MeV}/c^2$, $\Gamma = 83 \pm 14 \pm 11 \text{MeV}$

Mass is consistent with that of the X(1835), but width is

much smaller

225 million J/ψ events Phys. ReV. D88, 091502 (2013)

Model independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

- Clean channel (no background from $\rho\pi$, only even⁺⁺ amplitudes)
- $\pi^0\pi^0$ system: only significant 0^{++} and 2^{++} contributions
- Many broad and overlapping resonances (parameterization challenging)
- Model independent PWA

Model independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

PWA of $J/\psi \rightarrow \gamma \phi \phi$

- Ground-state glueball mass prediction by LQCD
 - -0^{-+} : 2.3 ~ 2.6 GeV/ c^2 , 2⁺⁺: 2.3~2.4 GeV/ c^2
- $\phi\phi$ system observations
- -- 0^{-+} : $\eta(2225)$ was observed in $J/\psi \to \gamma \phi \phi$, very little knowledge for those above 2 GeV/ c^2
- -- 2^{++} : broad structures around 2.3 GeV/ c^2 in $\pi^- N$ reactions and $p\bar{p}$ central collisions
- PWA of $I/\psi \rightarrow \gamma \phi \phi$ at **ES** (for M($\phi \phi$) < 2.7 GeV/ c^2)

1.3 billion J/ψ events; arXiv:1602.01523

PWA of $J/\psi \rightarrow \gamma \phi \phi$

1.3 billion J/ψ events; arXiv:1602.01523

Comparison:

Lines: model dependent fit

Markers: model independent fit

- 0^{-+} dominant
- Also has scalar and tensor components

	Resonance	${\rm M}({\rm MeV}/c^2)$	$\Gamma({\rm MeV}/c^2)$	B.F. $(\times 10^{-4})$	Sig.
	$\eta(2225)$	$2216^{+4}_{-5}{}^{+21}_{-11}$	$185^{+12}_{-14}{}^{+43}_{-17}$	$(2.40 \pm 0.10^{+2.47}_{-0.18})$	28σ
0-+	$\eta(2100)$	$2050^{+30}_{-24}{}^{+75}_{-26}$	$250^{+36}_{-30}{}^{+181}_{-164}$	$(3.30 \pm 0.09^{+0.18}_{-3.04})$	22σ
	X(2500)	$2470^{+15}_{-19}{}^{+101}_{-23}$	$230^{+64}_{-35}{}^{+56}_{-33}$	$(0.17 \pm 0.02^{+0.02}_{-0.08})$	8.8σ
0++	$f_0(2100)$	2101	224	$(0.43 \pm 0.04^{+0.24}_{-0.03})$	24σ
	$f_2(2010)$	2011	202	$(0.35 \pm 0.05^{+0.28}_{-0.15})$	9.5σ
2++	$f_2(2300)$	2297	149	$(0.44 \pm 0.07^{+0.09}_{-0.15})$	6.4σ
	$f_2(2340)$	2339	319	$(1.91 \pm 0.07^{+0.72}_{-0.73})$	11σ
	0 ⁻⁺ PHSP			$(2.74 \pm 0.15^{+0.16}_{-1.48})$	6.8σ

Summary

- \triangleright Recent results on J/ψ radiative decays are presented:
- 1. Spin-parity of the X(1835) is determined to be 0^{-+} in $J/\psi \rightarrow \gamma K_S K_S \eta$
- 2. Observation of the X(1840) in $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$
- 3. PWA of $J/\psi \to \gamma \pi^0 \pi^0$ is performed: 0^{++} dominated, also includes 2^{++} components
- 4. PWA of $J/\psi \rightarrow \gamma \phi \phi$ is performed: 0⁻⁺ dominated, also includes 0⁺⁺ and 2⁺⁺
- ➤ More results are expected to come soon!

Thank you!