Recent results on J/ψ radiative decays from BESIII **Zhang Jingqing** Chinese Academy of Sciences (On behalf of the \mathbb{H}^{5} Collaboration) Les Rencontres de Physique de la Vallee d'Aoste Results and Perspectives in Particle Physics La Thuile, Aosta Valley (Italy), March 6-12, 2016 ## Outline - Introduction - Selected results on J/ψ radiative decays - 1. Spin-parity determination of the X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$ - 2. Observation of the X(1840) in $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$ - 3. Partial wave analysis of $J/\psi \rightarrow \gamma \pi^0 \pi^0$ - 4. Partial wave analysis of $J/\psi \rightarrow \gamma \phi \phi$ - Summary #### The BESIII detector BESIII accumulated 1.3 billion J/ψ events in 2009 and 2012: Clean and rich source for light hadrons ## J/ψ radiative decays - J/ψ radiative decays: "gluon-rich" process - Clean data sample from e^+e^- annihilation - An ideal environment to study light hadron spectroscopy - Also search for glueball, hybrid state, multiquark state ## Spin-parity determination of the X(1835) - > X(1835): - First observed in $J/\psi \to \gamma \eta' \pi \pi$ at BESII in 2005, and confirmed at $\Xi \in \Sigma$ - Nature unclear: $p\bar{p}$ bound state, excited η' , glueball - \triangleright Partial Wave Analysis of $J/\psi \rightarrow \gamma K_S K_S \eta$: - A clean channel $(J/\psi \to K_S K_S \eta)$ and $J/\psi \to K_S K_S \eta \pi^0$ are forbidden) - The X(1835) is observed on $M(K_SK_S\eta)$ in $J/\psi \to \gamma K_SK_S\eta$ - PWA for $M(K_SK_S) < 1.1 \ GeV/c^2$ 1.3 billion J/ψ events Phys. Rev. Lett. 115, 091803 (2015) ## Spin-parity determination of the X(1835) - Two resonant pseudoscalar (0⁻⁺) components_{\geq 200} - $X(1835) \rightarrow K_S K_S \eta$ (> 12.9 σ) dominated by $f_0(980)$ production $$M = 1844 \pm 9^{+16}_{-25} \text{ MeV}/c^2, \Gamma = 192^{+20}_{-17}^{+16} \text{ MeV}$$ - ✓ Consistent with the X(1835) in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ - \checkmark Mass/spin is consistent with those of the \checkmark $\langle p\bar{p}\rangle$ - \checkmark Width is larger than the width of the $X(p\bar{p})$ PRL 115, 091803 (2015) #### Observation of the X(1840) • Clear enhancement at 1.84 GeV/ c^2 on $M(3(\pi^+\pi^-))$ in $J/\psi \to \gamma 3(\pi^+\pi^-)$ • M = $1842.2 \pm 4.2^{+7.1}_{-2.6} \text{MeV}/c^2$, $\Gamma = 83 \pm 14 \pm 11 \text{MeV}$ Mass is consistent with that of the X(1835), but width is much smaller 225 million J/ψ events Phys. ReV. D88, 091502 (2013) #### Model independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$ - Clean channel (no background from $\rho\pi$, only even⁺⁺ amplitudes) - $\pi^0\pi^0$ system: only significant 0^{++} and 2^{++} contributions - Many broad and overlapping resonances (parameterization challenging) - Model independent PWA ### Model independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$ ## PWA of $J/\psi \rightarrow \gamma \phi \phi$ - Ground-state glueball mass prediction by LQCD - -0^{-+} : 2.3 ~ 2.6 GeV/ c^2 , 2⁺⁺: 2.3~2.4 GeV/ c^2 - $\phi\phi$ system observations - -- 0^{-+} : $\eta(2225)$ was observed in $J/\psi \to \gamma \phi \phi$, very little knowledge for those above 2 GeV/ c^2 - -- 2^{++} : broad structures around 2.3 GeV/ c^2 in $\pi^- N$ reactions and $p\bar{p}$ central collisions - PWA of $I/\psi \rightarrow \gamma \phi \phi$ at **ES** (for M($\phi \phi$) < 2.7 GeV/ c^2) 1.3 billion J/ψ events; arXiv:1602.01523 ## PWA of $J/\psi \rightarrow \gamma \phi \phi$ 1.3 billion J/ψ events; arXiv:1602.01523 Comparison: Lines: model dependent fit Markers: model independent fit - 0^{-+} dominant - Also has scalar and tensor components | | Resonance | ${\rm M}({\rm MeV}/c^2)$ | $\Gamma({\rm MeV}/c^2)$ | B.F. $(\times 10^{-4})$ | Sig. | |-----|----------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------| | | $\eta(2225)$ | $2216^{+4}_{-5}{}^{+21}_{-11}$ | $185^{+12}_{-14}{}^{+43}_{-17}$ | $(2.40 \pm 0.10^{+2.47}_{-0.18})$ | 28σ | | 0-+ | $\eta(2100)$ | $2050^{+30}_{-24}{}^{+75}_{-26}$ | $250^{+36}_{-30}{}^{+181}_{-164}$ | $(3.30 \pm 0.09^{+0.18}_{-3.04})$ | 22σ | | | X(2500) | $2470^{+15}_{-19}{}^{+101}_{-23}$ | $230^{+64}_{-35}{}^{+56}_{-33}$ | $(0.17 \pm 0.02^{+0.02}_{-0.08})$ | 8.8σ | | 0++ | $f_0(2100)$ | 2101 | 224 | $(0.43 \pm 0.04^{+0.24}_{-0.03})$ | 24σ | | | $f_2(2010)$ | 2011 | 202 | $(0.35 \pm 0.05^{+0.28}_{-0.15})$ | 9.5σ | | 2++ | $f_2(2300)$ | 2297 | 149 | $(0.44 \pm 0.07^{+0.09}_{-0.15})$ | 6.4σ | | | $f_2(2340)$ | 2339 | 319 | $(1.91 \pm 0.07^{+0.72}_{-0.73})$ | 11σ | | | 0 ⁻⁺ PHSP | | | $(2.74 \pm 0.15^{+0.16}_{-1.48})$ | 6.8σ | | | | | | | | ## Summary - \triangleright Recent results on J/ψ radiative decays are presented: - 1. Spin-parity of the X(1835) is determined to be 0^{-+} in $J/\psi \rightarrow \gamma K_S K_S \eta$ - 2. Observation of the X(1840) in $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$ - 3. PWA of $J/\psi \to \gamma \pi^0 \pi^0$ is performed: 0^{++} dominated, also includes 2^{++} components - 4. PWA of $J/\psi \rightarrow \gamma \phi \phi$ is performed: 0⁻⁺ dominated, also includes 0⁺⁺ and 2⁺⁺ - ➤ More results are expected to come soon! ## Thank you!