Overview of the CLIC physics potential

Marco Szalay - Max Planck Institute for Physics - München On behalf of the CLICdp collaboration

Le Rencontres de Physique de la Vallèe d'Aoste -La Thuile, 12-03-2016

Outline

- CLIC Collaboration
- Accelerator Design
- Physics Requirements
- Detector Design
 - Vertex & Tracker
 - ECAL & HCAL
- Physics benchmarks
 - Top physics
 - Higgs physics
 - BSM physics

CLIC Collaboration

- Over 80 institutes from more than 30 countries
- Aim to develop and build multi-TeV e⁺e⁻ collider and detector
- <u>clic-study.web.cern.ch</u> and <u>clicdp.web.cern.ch</u> for more information

Accelerator and Detectors

Marco Szalay - Results and Perspectives in Particle Physics - 12 March 2016 - La Thuile

CLIC - Accelerator Design

CLIC (Comp	act I Inea	r Collider)

• 2-beam scheme:

high-intensity, low-energy beam drives low-intensity, high-energy beam

- Warm RF technology
- Laser straight

Lenght [km]			
Bunch rate [ps]			
σ _{x,y} [nm]			
£ [10 ³⁴ c ^{m-} 2s ⁻¹]			
∫£ [ab⁻¹]			
Gradient [MV/m]			
Power [MW]			

	380 GeV	1.5 TeV	3 TeV
km]	11.4	29	50.1
e [ps]		500	
n]	150x3	60x1.5	40x1
2s ⁻¹]	1.5	3.7	5.9
ןי	0.5	1.5	3
/IV/m]	72	72-100	72-100
/W1	252	364	589

Physics potential

- Precision measurement of:
 Higgs sector (couplings, mass, potential)
 - model independent H to Z coupling
 - Top quark (mass, width)
 - EW sector

Physics potential

- Precision measurement of: - Higgs sector (couplings, mass, potential)
 - model independent H to Z coupling
 - Top quark (mass, width)
 - EW sector
- Search for new physics:
 - Direct reach up to $\frac{\sqrt{s}}{2}$
 - Indirect reach far beyond \sqrt{s}

Detector Requirements

REQUIREMENTS

- Excellent tracking: $\sigma P_T / P_T^2 \sim 2 \times 10^{-5} \text{ GeV}^{-1}$
 - M_H recoil measurement and $H \rightarrow \ell^+ \ell^-$
- Highly granular calorimeters $\sigma E/E \sim 3.5\%$ @ E ~ 100 GeV
 - Separation of W and Z hadronic decays
- Impact parameter resolution $\sigma R \phi \sim 5 \oplus 15 / (p[\text{GeV}] \sin^{3/2} \theta)[\mu m]$
 - Efficient b and c jet tagging
 - Higgs couplings to fermions
- Precise time stamping ~ O(1-10ns)
 - Suppression of beam-induced background
 - Hadronic pile-up
 - Minimization of vtx occupancy

Detector - Overview

Detector - Vertex & Tracker

- 3µm single point resolution vertex
- 7µm single point resolution tracker
- 50 mW/cm² achieved with power pulsing
- $\leq 0.6\% X_0$ vertex total material budget
- \leq 1-2% X₀ tracker material budget per layer
- Total of 1m² of silicon and O(10⁹) pixels
- Silicon tracker: pixels or short strips options available
- Target resolution: $\sigma P_T / P_T^2 \sim 2 \times 10^{-5} \, \text{GeV}^{-1}$

$H \rightarrow \mu^{+}\mu^{-} \text{ at 3 TeV}$

Detector - ECAL & HCAL

Calorimetric subsystem optimized for Particle Flow event reconstruction \rightarrow high granularity

- Silicon/Tungsten ECAL (23 X₀ 1 λ_I)
- 5.1x5.1 mm² pads
- Scintillator/SiPM steel analog HCAL
- 30x30x3 mm³ scintillating tiles
- O(10⁷) readout channels

<u>0 GeV π - in Si/W Ecal</u>

z direction (layer number)

 R&D and prototypes developed by the CALICE collaboration

Physics benchmarks

Physics - Top

0

tt threshold - 1S mass 174 GeV

ISR only

350

---- TOPPIK NNLO

- CLIC350 LS only

345

12

355

 \sqrt{s} [GeV]

Physics - Higgs

380 GeV - Main Higgs production: Higgs strahlung and VBF Combined measurements give model-independent access to H couplings to Z and W bosons and total Higgs width

Physics - Higgs @ 350 GeV

Physics - Higgs @ 1.4 & 3 TeV

 \overline{v}_e

Η

Η

V_e

e⁺

Double Higgs production and H selfcoupling (simultaneous extraction of gннww and gннн couplings)

W*

Η

Top Yukawa coupling

ν̈́e

н

Н

e⁺

e⁺

e

W*

W*

 e^+

Marco Szalay - Results and Perspectives in Particle Physics - 12 March 2016 - La Thuile 15

 $\Delta g_{ttH} \sim 4\%$

W

W*

Physics - Higgs Global fit

All previous Higgs measurements at all \sqrt{s} energies (4 ab⁻¹, ~15 years of operations) of can be combined in a global fit, 2 strategies:

• Model independent (only at lepton collider):

 Γ_{H} as free parameter, most measurements to 1% precision, $\Delta\Gamma_{H}$ ~3.4%

• Model dependent (similar to LHC approach):

 $\Gamma_{\rm H}$ constrained by SM decays only, some measurements at ‰ level, $\Delta\Gamma_{\rm H}$ ~0.2%

Physics - BSM Overview

\sqrt{s} (TeV)	Process	Decay mode	SUSY model	Measured quantity	Generator value (GeV)	Stat. uncertainty
		$\widetilde{\mu}^+_R \widetilde{\mu}^R \to \mu^+ \mu^- \widetilde{\chi}^0_1 \widetilde{\chi}^0_1$		$\tilde{\ell} \text{ mass} \\ \tilde{\chi}_1^0 \text{ mass}$	1010.8 340.3	0.6% 1.9%
3.0	Sleptons	$\widetilde{e}^+_R \widetilde{e}^R ightarrow e^+ e^- \widetilde{\chi}^0_1 \widetilde{\chi}^0_1$	II	ℓ mass $\widetilde{\alpha}^0$ mass	1010.8	0.3%
		$\widetilde{\nu}_{e}\widetilde{\nu}_{e}\rightarrow\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}e^{+}e^{-}W^{+}W^{-}$		$\chi_1 \text{ mass}$ $\tilde{\ell} \text{ mass}$ $\tilde{\chi}_1^{\pm} \text{ mass}$	340.3 1097.2 643.2	0.4% 0.6%
3.0	Chargino Neutralino	$\begin{array}{c} \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^- \\ \widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \rightarrow h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \end{array}$	II	$\begin{array}{l} \widetilde{\chi}_1^\pm \ mass \\ \widetilde{\chi}_2^0 \ mass \end{array}$	643.2 643.1	1.1% 1.5%
3.0	Squarks	$\widetilde{q}_R \widetilde{q}_R \to q \overline{q} \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	Ι	\widetilde{q}_R mass	1123.7	0.52%
3.0	Heavy Higgs	$\begin{array}{l} H^0 A^0 \rightarrow b \overline{b} b \overline{b} \\ H^+ H^- \rightarrow t \overline{b} b \overline{t} \end{array}$	Ι	${ m H^0/A^0}\ { m mass}\ { m H^\pm}\ { m mass}$	902.4/902.6 906.3	0.3% 0.3%
1.4	Sleptons	$\widetilde{\mu}_{R}^{+}\widetilde{\mu}_{R}^{-} \rightarrow \mu^{+}\mu^{-}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$ $\widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1}^{-} \rightarrow a^{+}a^{-}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$	ш	$\begin{array}{l} \widetilde{\ell} \text{ mass} \\ \widetilde{\chi}_1^0 \text{ mass} \\ \widetilde{\ell} \text{ mass} \end{array}$	560.8 357.8 558.1	0.1% 0.1% 0.1%
1.4	Sieptons	$e_{R}e_{R} \rightarrow e^{+}e^{-}\chi_{1}\chi_{1}$ $\widetilde{\nu}_{e}\widetilde{\nu}_{e} \rightarrow \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}e^{+}e^{-}W^{+}W^{-}$	m	$\begin{array}{l} \widetilde{\chi}_1^0 \text{ mass} \\ \widetilde{\ell} \text{ mass} \\ \widetilde{\chi}_1^{\pm} \text{ mass} \end{array}$	357.1 644.3 487.6	0.1% 2.5% 2.7%
1.4	Stau	$\widetilde{\tau}_1^+ \widetilde{\tau}_1^- \to \tau^+ \tau^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	III	$\widetilde{\tau}_1mass$	517	2.0%
1.4	Chargino Neutralino	$ \begin{array}{c} \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^- \\ \widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \rightarrow h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \end{array} $	III	$\begin{array}{l} \widetilde{\chi}_1^\pm \ mass \\ \widetilde{\chi}_2^0 \ mass \end{array}$	487 487	0.2% 0.1%

Physics - BSM I

BSM direct measurement example: mass degenerate gaugino/neutralino sector @ 3 TeV

Physics - BSM II

BSM indirect measurement example: heavy Z'

}e− μ⁺ Z' /e− μ⁻

- Sensitive for discovery up to Z'_M of several 10 TeV via total e^+e^- -> $\mu^+\mu^-$ cross section
- Precision measurements for multi-TeV Z' via:
 - forward-backward asymmetry
 - ► left-right asymmetry with e⁻ polarization

Physics - BSM III

Heavy Higgs Bosons with almost degenerate mass

- Complex hadronic final states
- Extremely challenging at an hadron machine
- Heavy Higgs mass resolution ~0.3% @ 2 ab⁻¹

Summary & Conclusions

- Well established physics case for TeV-scale lepton collider
 - Precision top physics
 - Model independent Higgs measurement
 - Higgs mass, width and couplings (including top-yukawa coupling and self-coupling)
 - Direct (up to 1.5 TeV) and indirect (multi-TeV, model dependent) BSM physics
- Complementary to LHC
- Very active R&D program both for accelerator and detectors
- Large-scale tests have demonstrated feasibility of CLIC as an option for CERN after the LHC

CLIC meeting - January 2016

Thank you!

References: CLIC/CTF3 accelerator: Physics and detectors:

clic-study.web.cern.ch clicdp.web.cern.ch

Backup

CLIC - Accelerator Design II

A. Grudiev, H. Zha, V. Dolgashev

	380 GeV	1.5 TeV	3 TeV
Lenght [km]	11.4	29	50.1
Bunch [ps]		500	
σ _{x,y} [nm]	150x3	60x1.5	40x1
ℒ [10 ³⁴ c ^{m-} 2s ⁻¹]	1.5	3.7	5.9
Top 1% Energy ℒ [10³⁴c ^{m-} 2s⁻¹]	0.9	1.3	2.0
∫£ [ab⁻¹]	0.5	1.5	3
Repetition f [Hz]		50	
Gradient [MV/m]	72	72-100	72-100
Power [MW]	252	364	589

- 12 GHz cavities
- micrometer tolerances
- Breakdown rate < 0.7 ppm
- Long low-energy beam spectrum tail due to beam-fields interactions
- High $\gamma\gamma$ background from luminosity and bunch crossing rate

Detector - Overview

CLIC det 2015		
Tracker	Silicon	
Solenoid Field [T]	4	
Solenoid Free Bore [m]	3.4	
Solenoid Length [m]	8.3	
VTX Inner Radius [mm]	25-31	
ECAL Absorber	W	
ECAL Inner Radius [m]	1.5	
ECAL ∆R [mm] (X₀)	159 (23)	
HCAL Absorber	Steel	
HCAL λι	7.55	
Overall Height [m]	12.8	
Overall Length [m]	114	

Detector - Vertex

Detector - Tracker

- Silicon tracker: pixels and strips options available
- 5 layers (7 in endcaps)
- 7µm single point resolution
- \leq 1-2% X₀ budget per layer
- 1.5 m radius
- Target resolution: $\sigma P_T/P_T^2 \sim 2 \times 10^{-5} \,\text{GeV}^{-1}$
- Inner layer radius:
 25 mm @ ≤ 500 GeV
 31 mm @ 3 TeV (to keep occupancy below 3%)

Detector ECAL

Calorimetric subsystem optimized for Particle Flow event reconstruction \rightarrow high granularity

- 5.1x5.1 mm² pads
- 25 layers (23 X_0 1 λ_I)
- R&D and prototypes developed by the CALICE collaboration

Detector HCAL

- Scintillator/SiPM steel analog HCAL
- 30x30x3 mm³ scintillating tiles
- 60 layers (7.5 $\lambda_{\rm l}$)
- 20 mm steel per layer
- Inside the magnet barrel
- $O(10^7)$ readout channels

Other technologies under investigation: (digital/semidigital RPC HCAL) not part of the current CLIC detector model

