DEEP UNDERGROUND NEUTRINO EXPERIMENT

Michelle Stancari on behalf of the DUNE collaboration

Les Rencontres de Physique de La Vallée d'Aoste March 12, 2016

An Experimental Program in Neutrinos, Nucleon Decay and Astroparticle Physics enabled by the Fermilab Long-Baseline Neutrino Facility

144 Institutes from 26 Nations

1. Long Baseline Neutrino Oscillations

Neutrino Oscillations Simplified

The PMNS Mixing Matrix

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \equiv \begin{bmatrix} a_{12} & b_{13} & b_{13}e^{-i\delta} \\ b_{13} & b_{13}e^{-i\delta} \\ c_{13} & b_{13}e^{-i\delta} & c_{13} \end{bmatrix}$$

 $c^{}_{13}\text{=}\text{cos}\theta^{}_{13}$; $s^{}_{13}\text{=}\text{sin}\theta^{}_{13}$

Pontecorvo

Sov.Phys.JETP 6:429, 1957 Sov.Phys.JETP 26:984-988, 1968

Maki, Nakagawa, Sakata Prog.Theor.Phys. 28, 870 (1962)

What We Know

What We Don't Know

9

Science Program

1. Long Baseline Neutrino Oscillations:

combination of "long baseline" and "wide-band" beam optimizes sensitivity

- High discovery potential for leptonic CPV
- Guaranteed determination of MH
- Test of 3-flavour oscillation paradigm

More details in Phys Rev D91, 052015 (2015)

Fermilab

CUNE Science Program

- 1. Long Baseline Neutrino Oscillations
- 2. Proton Decay
 - direct observation of a nucleon decay would be monumental.
 - "Deep underground" to reduce backgrounds
 - Decay channels with kaons

‡ Fermilab

CUNE Science Program

- 1. Long Baseline Neutrino Oscillations
- 2. Proton Decay
- 3. Neutrino Astrophysics, including supernova neutrino bursts
 - Liquid argon detector can measure the v_e component of a supernova burst. The details of the core collapse process are encoded in the distribution of neutrino energy and arrival time.

CUNE Science Program

Fermilab

Div

The details of the core collapse process are encoded in the distribution of neutrino energy and arrival time.

A neutronization burst during the collapse produces a burst of electron neutrinos

Science Program

- 1. Long Baseline Neutrino Oscillations
- 2. Proton Decay
- 3. Neutrino Astrophysics, including supernova neutrino bursts
- 4. Atmospheric neutrinos
- 5. Precision measurements of neutrino interactions with the near detector

DUNE experimental strategy

Wide band, high purity ν_{μ} beam with peak flux at 2.5 GeV operating at ~1.2 MW and upgradable

‡ Fermilab

CUN

DUNE experimental strategy

detector at 574 m

Wide band, high purity ν_{μ} beam with peak flux at 2.5 GeV operating at ~1.2 MW and upgradable

DUNE experimental strategy

- Four identical cryostats deep underground
- Staged approach to four independent 10 kTon LAr detector modules
- Single phase and dual phase readout under consideration

Sanford Underground Research Facility

Fermi National Accelerator Laboratory

Fermilab

JU(VE

18 Michelle Stancari I Les Rencontres de Physique de La Vallée d'Aoste

DUNE/LBNF Near Site

- Primary proton beam 60-120 GeV extracted from Main Injector
- Initial 1.2 MW of beam power, upgradable to 2.3 MW
- Intense period of work to optimize horn focusing system and decay pipe geometry (Referenced and optimized designs)
- Near Detector hall at 574 m depth

Fermilab

DUNE/LBNF Neutrino Beam

- Primary proton beam 60-120 GeV extracted from Main Injector
- Initial 1.2 MW of beam power, upgradable to 2.3 MW
- Intense period of work to optimize horn focusing system and decay pipe geometry (Reference and optimized designs)
- Near Detector hall at 574 m depth

‡ Fermilab

volume

"LBNF

CDR

DUNE

/SI(00.

S

20 0 0

DUNE

512.05823

DUNE Near Detector

The near detector will measure

- CC v_{μ} events (normalization and energy spectrum)
- CC v_e and NC pi0 (backgrounds)
- Neutrino interaction properties

10⁷ interactions per year - high precision!

Reference design

- Fine grained tracker inside 0.4T magnetic field (straw tubes)
- Lead-scintillator ECAL
- RPC muon tracker

Other designs under consideration

辈 Fermilab

- Magnetized LArTPC
- High Pressure GArTPC

Far Detector at SURF

- Liquid argon (LAr) is both the interaction target and the detector.
- 40 kTon fiducial volume, divided into 4 modules (staged construction), each 17 kTon total volume
- 4 identical cryostats that can accommodate single phase or dual phase style detectors

Fermilab

#1

DUNE Far Detector at SURF

Fermilab

- The first module will be a single phase TPC (live in 2024). Its design is mature and the basis for the engineering prototype at CERN
- Subsequent modules can incorporate design changes that are demonstrated by ongoing R&D efforts, including a dual phase TPC option

Single Phase LAr Detector

Time Projection Chamber

- Anode Plane Assemblies
 (APAs) with three

 instrumented wire planes
 on each side (one
 collection and two
 induction) to readout
 ionization charge
- Drift field of 500 V/cm
 (cathode planes: 180 kV)
- Four drift regions 3.6 m each
- Photon Detection System (not shown) integrated into APAs to measure scintillation light for nonbeam event timing

25 Michelle Stancari I Les Rencontres de Physique de La Vallée d'Aoste

Cosmogenic induced kaons observed by the ICARUS detector

Adv. High Energy Phys., vol. 2013, p. 260820, 2013

Dual-Phase LAr Detector

Ionization charge extracted into Ar gas phase

charge amplification via large electron multipliers (LEM) before readout [2 dimensional charge collection]

Fermilab

→ If demonstrated, could be used as alternative design for 2nd or subsequent 10 kt far detector modules

HADR shower

Zurich 200 liter prototype

arXiv: 1301.4817v1

‡ Fermilab

DUNE

28 Michelle Stancari I Les Rencontres de Physique de La Vallée d'Aoste

- Simultaneous fit to all four event spectra to extract MH and δ_{CP} $(v_u, anti-v_u, v_e, anti-v_e)$
- Plots below assume normal MH and $\delta_{CP}=0$
- 10 years of DUNE running is roughly 300 kTon*MW*years

- Simultaneous fit to all four event spectra to extract MH and δ_{CP} (ν_{μ} , anti- ν_{μ} , ν_{e} , anti- ν_{e})
- Plots below assume normal MH and δ_{CP} =0
- 10 years of DUNE running is roughly 300 kTon*MW*years

- Simultaneous fit to all four event spectra to extract MH and δ_{CP} (ν_{μ} , anti- ν_{μ} , ν_{e} , anti- ν_{e})
- Plots below assume normal MH and δ_{CP} =0
- 10 years of DUNE running is roughly 300 kTon*MW*years

Expected number of events in the far detector. 5 years running, δ_{CP} =0, normal MH (inverted)

	Neutrino beam	Anti-neutrino beam
\mathbf{v}_{μ} signal	7929	2639
\mathbf{v}_{μ} background	29	18
ν_e signal	945(521)	168(436)
ν_e background	243	127

- Simultaneous fit to all four event spectra to extract MH and δ_{CP} $(v_u, anti-v_u, v_e, anti-v_e)$
- Plots below assume normal MH and δ_{CP} =0
- 10 years of DUNE running is roughly 300 kTon*MW*years

CUNE sensitivity – mass hierarchy

DUNE sensitivity - CPV

34

Michelle Stancari I Les Rencontres de Physique de La Vallée d'Aoste

DUNE

DUNE sensitivity – proton decay

🗱 Fermilab 🛛 🖾 💦 🗄

							2	024: Fi	rst data	a!		
Timeline							2026: I		First Beam!			
2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Proto	DUNEs											
	Caver	n exca	vation									
				Cryos	tat Con	structio	on					
						Far D	etector	Installa	tion			
								Far D	tector	comm	ssionin	g
2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Near [Detecto	or Desig	ŋn									
		Conve	entional	l Facilit	ies des	ign						
							Near I	Detecto	or Hall			
								Install Syster	Beaml ms	ine		
									Install Comm	and 1. ND	<	
36	Mich	nelle Stand	ari I Les	s Rencontr	es de Phys	sique de La	a Vallée d'A	Aoste	*	Fermila	b DU	(VE

What's happening now?

- Development of specific detector/beam components such as beamline target, light detection systems and cold readout electronics
- Small scale integrated far detector prototypes operating in 2016
- Optimization of beam/detector designs for the best physics sensitivities

Detailed near detector design, automatic reconstruction of neutrino interactions in far detector, optimize beam focusing system

What's happening soon?

• CERN neutrino platform, complete with hadron test beam, is hosting two engineering prototypes for the far detector.

Fermilab

- Component construction in 2016-17
- Installation in 2017 and operation in 2018.

What's happening now?

Development of specific detector/beam components such as beamline target, light detection systems and cold readout electronics Many critical projects

6

Fermilab

- Small scale integrated far det
- Optimization of beam/detecto await interested sensitivities students, postdocs and

Detailed near detector design, a faculty. interactions in far detector, optinize beam locusing system

What's happening soon?

- CERN neutrino platform, complete with hadron test beam, is hosting two engineering prototypes for the far detector.
 - Component construction in 2016-17
 - Installation in 2017 and operation in 2018.

Detector Development and Prototyping

- Mitigation of risks associated with current detector designs
- Establishment of construction facilities required for full-scale production of detector components
- Early detection of potential issues with construction methods and detector performance
- Provides required calibration of detector response to particle interactions in test beam

35ton @ FNAL

Novel aspects of the 35ton

- Membrane cryostat
- FR4 printed circuit board field cage
- Light-guide style photon detectors
- Wrapped wire planes
- Multiple drift volumes
- Cold electronics: FE ASIC + ADC ASIC
- Triggerless DAQ operation (continuous readout)

Novel aspects of the 35ton

- Membrane cryostat
- FR4 printed circuit board field cage
- Light-guide style photon detectors
- Wrapped wire planes
- Multiple drift volumes
- Cold electronics: FE ASIC
 + ADC ASIC
- Triggerless DAQ operation (continuous readout)

Cosmic Ray Counters (CRCs)

20 cm short drift region

All of these items are part of the FD design.

They all solve issues related to scaling existing LArTPC detectors to the multi-kTon scale and operating underground at SURF.

All but one were not yet demonstrated to work in an integrated system in Dec 2015.

Fov

35ton Single Phase Prototype at FNAL Spring 2016 Cosmic Ray Run

WA105 Dual Phase Prototype 1x1x3m at CERN

Germilab

ProtoDUNEs at CERN Neutrino Platform

Proposed measurement program for SP ProtoDUNE

Calibration of the detector in a test beam is highly desired

- EM shower energy resolution
- Electron/photon separation
- PID using dE/dx vs range
- Many more . . .

Particle	$\rm Momenta~(GeV/c)$	Sample	Purpose			
		Size				
π^+	0.2, 0.3, 0.4, 0.5, 0.7, 1, 2, 3, 5, 7	10k	hadronic cal, π^0 content			
π^{-}	0.2, 0.3, 0.4, 0.5, 0.7, 1	10k	hadronic cal, π^0 content			
π^+	2	600k	π^o/γ sample			
proton	0.7, 1, 2, 3	10k	response, PID			
proton	1	1M	mis-ID, PD, recombination			
$e^+ \text{ or } e^-$	0.2, 0.3, 0.4, 0.5, 1, 2, 3, 5, 7	10k	e- γ separation/EM shower			
μ^{-}	(0.2), 0.5, 1, 2	10k	E_{μ} , charge sign			
μ^+	(0.2), 0.5, 1, 2	10k	E_{μ} , Michel el., charge sign			
$\mu^- \text{ or } \mu^+$	3, 5, 7	5k	E_{μ} MCS			
anti-proton	low-energy tune	(100)	anti-proton stars			
K ⁺	1	(13k)	response, PID, PD			
K ⁺	0.5, 0.7	(5k)	response, PID, PD			
μ , e, proton	1 (vary angle $\times 5$)	10k	reconstruction			

Summary

- The DUNE science program addresses fundamental questions
 in particle physics
 - Neutrino Oscillations: mass hierarchy and CP violation
 - Nucleon Decay
 - Supernova burst detection, neutrino astrophysics
- LBNF/DUNE will employ a 1.2 MW (and upgradable) neutrino beam, a fine-grained near detector at Fermilab and a modular 40kt LAr far detector at SURF.
- DUNE is a growing international collaboration that welcomes new members to help define, build and further improve the experimental program

Fermilab

LArTPCs in Test Beams

Charged particle beams covering the energy range and particle species that will be seen in DUNE neutrino interactions

Detector Engineering goals

- Measure and benchmark detector performance
- Test installation procedures and operation

Run 8125 Spill 44 Event 11 2016-02-20 01:45:29

LArIAT@FNAL and the protoDUNEs@CERN address all of these goals

Jen Raaf, Fermilab

Physics Measurements

- Assess detector systematic uncertainties
- π-Ar and kaon-Ar interaction cross sections
- Geant4 validation and tuning
- Develop criteria for determining particle charge based on topology (decay vs. capture), without magnetic field
- Electron/photon shower ID

Proton Improvement Plan II and III

Upgrades to increase proton yield

PIP II : (ready by \sim 2025) MI beam power \rightarrow **1.2 MW**

- upgrade to superconducting (SC) 800 MeV linac
- Booster rep. rate: 15 → 20 Hz
- MI rep. cycle: 1.33 → 1.2 s

PIP III: (> 2025) MI beam power → 2.3 MW

- Upgrade to 8 GeV SC linac OR
- Upgrade to 2 GeV SC linac and
- Replace booster with 8 GeV rapid cycling synchrotron (RCS)

Simulated dual phase events

‡ Fermilab

DUNE

LArTPC Development Path Fermilab SBN and CERN neutrino platform provide a strong LArTPC development and prototyping program

51 Michelle Stancari I Les Rencontres de Physique de La Vallée d'Aoste

Long Baseline Neutrino Facility

Fermilab Accelerator Complex

Dual Phase ProtoDUNE

Concept of double-phase LAr TPC (Not to scale)

Large scale LAr TPC for LB neutrino oscillation physics, astrophysics, and nucleon decay search (GUT physics)

- Single cryo-tank based on industrial LNG solution to house O(10) kton of LAr mass
- Double-phase for charge readout with amplification:
 - Long drift distances
 - Low energy detection thresholds
 - readouts with only collection views
 - maximise active LAr volume whilst minimising the number of channels.

‡ Fermilab

GLACIER concept. (A. Rubbia, Experiments for CP-violation: A giant liquid argon scintillation, Cherenkov and Charge imaging experiment? <u>hep-ph/0402110.</u>)

DUNE sensitivity – proton decay

LBNF beam composition

v flux/m²/GeV/10²⁰ POT at 1300 km 1 01 0 v flux/m²/GeV/10²⁰ POT at 1300 km . 0 v Energy (GeV) v Energy (GeV)

Neutrino beam

DUNE CDR – "LBNF volume" aiXrv: 1601.05823

🗱 Fermilab 🛛 🕬

Anti Neutrino beam

Disentangling MH and delta-CP

Phys Rev D91, 052015 (2015), figure 1

- Both MH and delta-CP change the height of the oscillation peak – degeneracy
- But each shifts the peak in L/E differently – use shape to disentangle

Plots are P(nu-mu -> nu-e) vs L/E. Top is NH, different deltaCP values Bottom is deltaCP=0 different L values (b) Impact of CP Phase on Vacuum Oscillations

(c) Impact of Matter Effects on Oscillations (δ_{cp} = 0)

Fermilab

Oscillation Physics with Accelerator Long Baseline Beams

