

The Upgrade of the Pierre Auger Observatory

Darko Veberic

IKP, Karlsruhe Institute of Technology (KIT), Germany

for the Pierre Auger Collaboration

http://www.auger.org/archive/authors_2016_03.html

Darko Veberic

Spectrum of Cosmic Rays

Cosmic Accelerators

Mercury orbit

Darko Veberic

La Thuile 2016

5/28 🔌 🕻 🕇

Pierre Auger Collaboration

16 countries, ~90 institutions, ~500 authors

Pierre Auger Observatory

just east of Andes Province of Mendoza, Argentina

area 3000 km² (4x Berlin)

2000: Engineering Array 2004: start... 2008: end of construction

Darko Veberic

Detectors

fluorescence detector (FD)

surface detector (SD) water-Cherenkov technique

1.5 km spacing, 1660 SD stations; 27 FD telescopes lidars, cloud monitoring, weather stations <*h*> = 1450 m a.s.l., *X*_{vert} = 860 g/cm²

Darko Veberic

Shower Observables

Main Results

Two Suppression Scenarios

Scenario 1

Scenario 2

+ p-dominated "dip" scenario

Composition Fits to X_{max}

proton fraction at highest energies?

new particle physics?

Darko Veberic

La Thuile 2016

 $X_{\rm max}$ from FD!

Increase of FD Duty Cycle

dark moonless nights → moon fraction: 90%

background 40x higher

10x lower gain (aging!)

50% larger duty cycle

Darko Veberic

Enhancements

new electronics 40→120 MHz sampling more channels, CPU

currently 3 large PMTs +small PMT

station closest to core

Darko Veberic

Increased Composition Sensitivity

with SD

main goal!

Darko Veberic

La Thuile 2016

15/28 **XIT**

Complementary Response

Darko Veberic

R&D Prototype

17/28 **XIT**

Darko Veberic

La Thuile 2016

Universality

Darko Veberic

Different Consequences

Composition-Enhanced Anisotropy

La Thuile 2016

20/28

Darko Veberic

Timeline

July 2016: Engineering Array, 12 stations equipped with scintillators \rightarrow SSD

end of 2016: evaluation

2017-2018: deployment of 1600 SSD

until 2025: data-taking

21/28

SSD Design

3.8 m²

ΡΜΤ

SiPM

SSD Production

Darko Veberic

KASCADE Muon Tower

Darko Veberic

SSD Signal

Muon Tomography

6h statistics, 1cm x 1cm binning

Darko Veberic

La Thuile 2016

27/28

Summary

- extend Observatory operation 2018-2025
- equip 1600 stations with scintillators
- increase FD duty cycle
- doubling of event statistic
- but now with primary mass information

Steven Saffi 2014

Thank you!

Empty

Backup

Darko Veberic

La Thuile 2016

32/28 🔌 KIT

Matrix formalism

$$\begin{pmatrix} S_{\rm scin} \\ S_{\rm wcd} \end{pmatrix} = \begin{pmatrix} a & b \\ 1-a & 1-b \end{pmatrix} \begin{pmatrix} S_{\gamma,e^{\pm}} \\ S_{\mu^{\pm}} \end{pmatrix}$$

Written plainly:

$$\begin{split} S_{\text{scin}} &= a S_{\gamma,e^{\pm}} + b S_{\mu^{\pm}} \\ S_{\text{wcd}} &= (1-a) S_{\gamma,e^{\pm}} + (1-b) S_{\mu^{\pm}} \end{split}$$

where:

By means of inversion:

$$S_{\mu^{\pm}} = \frac{1}{a-b}((a-1)S_{\text{scin}} + aS_{\text{wcd}}) \text{ and } S_{\text{wcd}}^{\mu^{\pm}} = (1-b)S_{\mu^{\pm}}$$

Signals are in **MIP/VEM**

D. Schmidt, D. Veberic, M. Roth Institute for Nuclear Physics (IKP)

Why Muons Matter!

 CR composition measurement → origin of flux suppression (sources), proton fraction (pair-production "dip", future of astronomy with CR, predict gamma & nu flux)

- muons probe for models of hadronic interactions
- AugerPrime: upgrade \rightarrow shower-to-shower determination of primary mass

34/28 **XI**

Auger, PRD 91 (2015) 032003

Darko Veberic

Change in EM Transfer

Darko Veberic

Muon Production Depth

Muon Production Depth

Auger, PRD 90 (2014) 012012

Darko Veberic

La Thuile 2016

38/28

Current Level of Accuracy

Darko Veberic